五年级数学教案

时间:2023-02-24 10:59:41 数学教案 我要投稿

五年级数学教案汇编15篇

  作为一名人民教师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的五年级数学教案,仅供参考,大家一起来看看吧。

五年级数学教案汇编15篇

五年级数学教案1

  教学内容:

  教科书第18页例4和做一做

  教学目标:

  1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

  2、能根据乘除法之间的关系进行验算,提高计算的正确率;

  3、养成良好的计算、验算习惯。

  教学重点:

  掌握小数除以整数的计算方法,你能正确计算

  教学难点:

  特殊情况的小数除以整数的算法

  教学过程:

  一、复习引入

  1、口算

  2。4÷2 4。8÷6 9。09÷9

  8。24÷8 6÷5 1÷5

  2、填空,并说出为什么?

  (复习乘除法之间的`关系,为下面学习验算做好准备)

  3、列竖式计算(生板演)

  (1)7。44÷4(2)7。44÷8

  (3)102÷24(4)4。551÷5

  四道逐渐变难

  二、探究新知

  1、在评价学生的计算结果中帮助学生学会归纳和总结。

  师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

  学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

  师:做小数除以整数还有什么要提醒大家的?

  四人小组讨论并归纳

  学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

  课件出示补充。

  2、在暴露计算错误的过程中引导学生学会验算。

  (1)师:为了保证我们的计算正确,怎么办?——验算

  验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

  学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

  师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

  (2)门诊台

  课件出示。

  小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

  三、巩固练习

  1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

  37。8÷6=63 7。4÷5=1。4……4

  2、计算并验算

  43。5÷29 18。9÷27

  1。35÷15 207÷45

  3、书第20页:7、8题

  四、课堂小结

  说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案2

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的'分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

五年级数学教案3

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的.基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学教案4

  教学目标:

  1、引导学生通过观察、思考、归纳、总结等方法,掌握简单的时间单位的换算。

  2、引导学生从图片中获取有意义的数学信息,找出要解决的问题,通过独立思考、小组合作等方式解决问题,掌握解学问题的基本方法。

  3、通过教学,使学生体验数学与生活的密切联系,在运用所学知识解决问题的过程中,体验数学学习的'乐趣。

  教学重点:

  1、掌握简单的时间单位的换算。

  2、建立计算经过时间的模型:终点时间—起点时间=经过的时间。

  3、渗透解决问题的三个步骤:阅读与理解、分析与解答、回顾与反思。

  教学难点:

  建立计算经过时间的模型:终点时间—起点时间=经过的时间。

  教学过程:

  一、导

  开学了,熊大和熊二从熊堡出发去学校,熊大用了2小时,熊二用了120分钟,熊大说它用的时间少,熊二说它的用时少,它俩谁也不甘示弱。同学们,请你们当裁判,它们俩究竟谁用的时间少,好吗?

  二、学

  (一)单位换算

  1、从熊堡到学校,熊大熊二谁用的时间少?为什么2时=120分?你是怎么想的?

  2、学生独立思考后,汇报:1时是60分,2时就是2个60分,也就是60+60=120分。

  3、同学间相互说一说。

  4、180秒=()分,你是怎么想的?

  5、练一练:3分=()秒

  600分=()时

  你是怎么想的?你又是怎么算的?

  先独立思考,然后与你的同学交流交流。

  (二)时间计算

  9月1日,小明背着书包上学去了!(课件出示)

  三、析

  1、观察你从中获得了哪些有意义的数学信息?(小明7时30分离家,7时45分到校)你能提出什么数学问题?(小明从家到学校用了多长时间?)

  2、小明从家到学校用了多长时间?怎么解决这个问题呢?你有什么方法?先独立思考,然后与小组同学交流你的想法。

  3、小组合作交流,教师巡视指导,收集信息。

  4、学生汇报,课件出示

  (1)直接数一数,7:30到7:45分针走了15分钟。

  (2)7:30到7:45分针走了3个大格,是15分钟。

  (3)都是7时多,直接用45—30算出用了15分钟。

  5、小明从家到学校用了15分钟对吗?你是怎么想的?(7:30过15分钟就是7:45,15分钟是对的。)

  6、写上答语。(小明从家到学校用了15分钟。)

  7、你喜欢哪种方法?为什么?

  8、整理解决问题的基本方法。我们是怎么解决这个问题的?谁来说说?师做整理板书:阅读与理解→分析与解答→回顾与反思。

  四、练

  1、填一填。

  在○里填上>、<或=

  9分○90秒4时○24分1分15秒○65秒3时○200分140秒○2分1时30分○90秒

  2、做一做。

  小明去给外地打工的妈妈打电话,电话亭的营业时间,早上9:00开门,晚上8:00关门。小明8:40到达,他还要等多久呢?

  3、总结:今天的学习,你有哪些收获?

  4、作业:课本第7页第8题。

五年级数学教案5

  课型:

  新授

  教学内容

  教材P5~6例3、例4及练习二第1、9题。

  教学目标

  知识与技能

  理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。

  过程与方法

  在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。

  情感、态度与价值观:

  渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。

  教学重点

  在理解小数乘法和小数意义的基础上掌握计算方法。

  教学难点:

  让学生自主探究小数乘法的计算方法并正确地进行笔算。

  教学方法

  观察、分析、比较。

  教学准备

  多媒体。

  教学过程

  一、复习引入

  1.口算。×59××60.23×314×3×3

  口算后提问:从14×3和×3的口算中,你有什么发现?

  2.列竖式计算。26×7×123×25

  学生独立完成,指名板演,订正时让学生说一说计算的过程。

  3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)

  二、自主探究

  1.创设情境,引入问题。出示教材第5页例3的主题情境图。

  师:观察图片,说说你发现了什么?(学校有一个长米、宽米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)

  师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?

  全班交流,然后说出解决问题的方法。

  师:我们该如何解决问题呢?

  生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。

  师:那么怎样求宣传栏的面积呢?如何列式呢?生:×

  师:这个式子中,两个因数都是小数,该如何计算呢?

  生1可以用竖式计算:×

  生2:也可以把它们可作整数来计算(下左)。

  师:那么如何求一共需要多少油漆呢?

  生:算式是×,可以仿照上面同样的方法计算。(上右)

  所以一共需要千克油漆。

  师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?

  学生小组交流讨论,老师加以总结。

  小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。

  师:看一看算式的两个因数中一共有几位小数?积呢?

  生:两个因数中一共有2位小数,积也有2位小数。

  2.探究小数乘法的计算方法。完成P6例4上面的填空。

  (l)组织学生尝试完成教材第5页的“做一做”。

  (2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。

  (3)教学例4。×

  师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?

  学生讨论,教师板书。

  师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

  师:观察黑板上各题,小组讨论。(出示讨论提纲。)

  讨论提纲:①小数乘小数,我们首先怎样想?

  (把两个因数的小数点去掉,转化为整数乘法。)

  ②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)

  ③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?

  (教师以竖式中的因数的`小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)

  3.根据上面的分析,想想小数乘法是怎样计算的?

  学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。

  生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。

  教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。

  三、巩固练习

  1.不计算,说一说下列各题的积有几位小数。

  ×××

  ×0.03××

  提问:怎样判断积有几位小数?

  2.用竖式计算。(教材第6页“做一做”的第1题)

  提问:你是怎样计算×的?

  3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。

  师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。

  师:一个数(0除外)乘大于1的数,积比原来的数大。

  一个数(O除外)乘小于1的数,积比原来的数小。

  四、课堂小结

  师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)

  作业:教材第8~10页练习二第1、9题。

  板书

  小数乘小数

  ×=×=

  1看、2算、3数、4点

五年级数学教案6

  本册教学目标,使学生:

  1.比较熟练地进行小数乘法和除法的笔算。

  2.在具体情境中会用字母表示数,理解等式的性质,会用等式的性质解简单的方程,用方程表示简单情境中的等量关系并解决问题。

  3.探索并掌握平行四边形、三角形、梯形的面积公式。

  4.能辨认从不同方位看到的物体的形状和相对位置。

  5.理解中位数的意义,会求数据的中位数。

  6.体验事件发生的等可能性以及游戏规则的公平性,会求一些事件发生的可能性;能对简单事件发生的可能性作出预测,进一步体会概率在现实生活中的作用。

  7.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  8.初步了解数字编码的思想方法,培养发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  10.养成认真作业、书写整洁的良好习惯。

  第一单元小数的乘法

  单元教学目标:

  1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。

  2、使学生会用“四舍五人法”截取积、商是小数的近似值。

  3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。

  教案

  教学内容小数乘以整数课型新授课

  教学目标1、使学生理解小数乘以整数的计算方法及算理。

  2、培养学生的迁移类推能力。

  3、引导学生探索知识间的练习,渗透转化思想。

  教学重点小数乘以整数的算理及计算方法。

  教学难点确定小数乘以整数的积的小数点位置的方法。

  教具准备放大的复习题表格一张(投影)。

  教学过程一、引入尝试:

  孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

  1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

  ⑴例1:风筝每个元,买3个风筝多少元?(让学生独立试着算一算)

  (2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

  用加法计算:++=元元=3元5角

  3元×3=9元5角×3=15角9元+15角=元

  用乘法计算:×3=元理解3种方法,重点研究第三种算法及算理。

  ⑶理解意义。为什么用×3计算? ×3表示什么?

  (3个或的3倍.)

  (4)初步理解算理。怎样算的?把元看作35角

  3.5元扩大10倍3 5角

  × 3 × 3

  1 0. 5元1 0 5角

  缩小到它的1/10

  105角就等于元

  (5)买5个要多少元呢?会用这种方法算吗?

  2、小数乘以整数的计算方法。

  象这样的元的几倍同学们会算了,那不代表钱数的×5你们会算吗?(生试算,指名板演。)

  ⑴生算完后,小组讨论计算过程。

  板书:0.7 2

  × 5

  3. 6 0

  (2)强调依照整数乘法用竖式计算。

  (3)示范:0. 7 2扩大100倍7 2

  × 5 × 5

  3. 6 0 3 6 0

  缩小到它的1/100

  (4)回顾对于×5,刚才是怎样进行计算的?

  使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

  (5)专项练习

  ①下面各数去掉小数点有什么变化?

  ②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

  ③判断

  1

  × 2

  0

  (6)小结小数乘整数计算方法

  计算7 ×4 ×4 25×7 ×7

  观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

  ①先把小数扩大成整数;②按整数乘法的法则算出积;

  ③再看被乘数有几位小数,就从积的`右边起数出几位,点上小数点。

  l专项练习

  二、运用

  1、填空。

  4.5 ( ) 0 .7 4 ( )

  × 3 × 3 × 2 × 2

  ( ) 1 3 5 ( ) 1 4 8

  2、做一做书p2

  三、体验:(1)今天我们学习了什么?(板书课题)(2)小数乘以整数的计算方法是什么?

  四、作业:

  口算:

  70×30

  45×100

  ×10

  ×1000

  5×10

  ×100

  注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

  板书小数乘整数1

  3.5元3 5角

  × 3 × 3

  1 0. 5元1 0 5角

  例2

  0. 7 2扩大到它的100倍7 2

  × 5 × 5

  3. 6 0 3 6 0

  缩小到它的1/100

  教后反思:学生基本能理解小数乘法的算理,但是在计算完后小数点经常点错。下节课要进行专项练习。

  教案

  教学内容小数乘小数课型新授课

  教学目标1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

  2、比较正确地计算小数乘法,提高计算能力。

  3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

  教学重点小数乘法的计算法则。

  教学难点小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

  教具准备投影、口算小黑板。

  教学过程一、引入尝试

  1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:×)

  2、尝试计算

  师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

  师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算×呢?

  如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

  示范:

  1. 2扩大到它的10倍1 2

  × 0. 8扩大到它的10倍× 8

  6缩小到它的1/100 9 6

  3、×,刚才是怎样进行计算的?

  引导学生得出:先把被乘数扩大10倍变成12,积就扩大10倍;再把乘数扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

  4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:×2的积中有几位小数?2×2呢?

  5、小结小数乘法的计算方法。

  师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。

  ①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

  ②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

  ③计算×时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

  (3)根据学生的回答,逐步抽象概括出页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

  (4)专项练习①判断,把不对的改正过来。

  2 4 1 3

  × 4 × 2 6

  9 6 7 8

  2 4 2 6

  3 6 0 0 3 3 8

  三、应用

  1、在下面各式的积中点上小数点。

  0 . 5 8 6 . 2 5 2 . 0 4

  × 4. 2 × 0 . 1 8 × 2 8

  1 1 6 5 0 0 0 1 6 3 2

  2 3 2 6 2 5 4 0 8

  2 4 3 6 1 1 2 5 0 5 7 1 2

  2、做一做:先判断积里应该有几位小数,再计算。

  67× ×

  3、页5题。

  先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

  四、体验回忆这节课学习了什么知识?

  五、作业:P8 7、9题。P9 13题。个人修改

  口算:

  ×

  ×1

  76×3

  75×5

  5×6

  ×

  ②根据1056×27=,写出下面各题的积。

  10×= 6×7= 056×27= ×7=

  板书

  教后反思:小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。

五年级数学教案7

  教学目标

  1.通过直观的操作活动,理解异分母分数加减法的算理。

  2.能正确计算异分母分数的加减法。

  教学重点

  异分母分数加减法的计算法则。

  教学难点

  把分母不同的分数通过通分化成分母相同的分数。

  教具、学具

  学生准备几张用来折纸的纸张。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  1、复习引题

  1.在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?

  2、先看书上的折纸活动

  师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式

  3、新授

  1.估一估他们用了这张纸的`几分之几?

  2.再算一算他们用了这张纸的几分之几?

  3.重点教学加的计算教师引导学生理解要先通分然后才能计算的算理。

  口算。

  2/7+3/7=5/6+1/6=

  13/14-3/14=

  1/12+5/12=

  同桌的两个同学也像那两个同学一样折一折纸,并列出算式:

  1/2+1/4=

  通过折纸来估计

  小组讨论书上两幅图的计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。

  回忆同分母分数加减法的计算方法。

  通过折纸学生直观的认识到异分母分数加减计算的学习必要性。

  通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4.总结异分母分数加法的计算法则。

  5.自学异分母分数减法

  学生自学,教师巡回指导。

  4、巩固练习

  Ρ65练一练

  5、全课总结

  学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。

  学生自己看书学习

  第(2)题小红比小明多用了这张纸的几分之几?

  根据加法的法则自己总结法则。

  学生独立完成第1题教师指名回答说说是怎么想的

  培养学生总结归纳知识的能力。

  在独立探索中掌握异分母分数减法的计算方法。

  学习知识的归纳总结

  板书设计:折纸

  异分母减法的计算方法:

  分母不相同的分数相加减,要先通分,化成相同的分母,再加减。

  练习

五年级数学教案8

  教学目标

  整理和复习

  教学内容

  本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。

  平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。

  组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。

  本单元具体的`教学内容分析如下:

  1.平行四边形的面积。

  通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。

  2.三角形的面积。

  为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。

  3.梯形的面积。

  这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。

  4.组合图形的面积。

  教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。

  5.整理和复习

  这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。

五年级数学教案9

  学习目标

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

  学情分析重点、难点:

  在现实情景中理解正负数及零的意义。

  易混点、易错点:感受用正数和负数来表示一些相反意义的量

  学生认知基础:生活中见到过负数。

  时间分配学20讲10练10

  教法学法

  自主探索法,练习法,讲授法。

  教学准备

  第一课时

  一、自学例1

  1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

  2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  3、上海和北京的气温一样吗?不一样在哪儿?

  4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

  二、自学例2

  1、了解海拔的意义。

  2、思考从图上你知道了什么?

  3、试着用今天所学的知识来表示这两个地方的海拔高度。

  学生活动教师助学课后改进

  第一课时

  第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

  (1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

  (2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  (3)上海和北京的气温一样吗?不一样在哪儿?

  (5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

  第三板块:正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  学生看温度计,选择合适的卡片表示各地气温。

  第三板块:交流学习例2

  交流:从图上你知道了什么?

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

  学生根据今天所学知识把这些数分类。

  正数都大于0,负数都小于0。

  先指名读一读,再用正数或负数表示图中数据。

  先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

  一:教学例1

  1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

  根据学生的预习,共同学习交流认识新知。

  (4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

  2.教学正数和负数的读、写方法。

  “+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

  3.指导完成“试一试”。

  (卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

  二:教学例2

  1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

  三:初步归纳正数和负数。

  ⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

  ⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

  ⑶提问:正数、负数和0比一比,它们的`大小关系怎样?

  四:练习

  做“练一练”1,2题

  2.做练习一第1题。

  3.做练习一第2题。

  4、练习一4、5、6题。

  五:作业

  练习一第3题。

  交流认识新知。

  正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  正数、负数和0比一比,它们的大小关系怎样?

  正数都大于0,负数都小于0。

  课后反思

  得:

  首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

  失:

  《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

  由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级数学教案10

  教学内容:

  连乘、乘加、乘减和把整数乘法运算定律推广到小数。

  教学目标:

  1、掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。

  2、理解整数乘法的交换律、结合律、分配律对于小数同样适用。

  3、提高学生的类推能力,培养学生知识间存在着内在联系的思想。

  教学过程:

  课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。

  一、复习旧知

  1、出示投影,先回答问题,再计算。

  (1)12×5×60

  (2)30×7+85

  (3)250×4—200

  教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?

  学生回答后,在练习本上计算结果。

  订正:(1)3600(2)295(3)800

  教师说明:小数的这些运算顺序跟整数是一样的。

  教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。

  二、小数连乘、乘加、乘减

  1、初步尝试。

  出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0。18千克,每千克可榨油0。45千克,一共可榨油多少千克?

  全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程

  0。45×0。18×300

  =0。081×300

  =24。3(千克)

  答:一共可榨油24。3千克。

  订正答案后,教师提问

  (1)算式中有几步计算?每个数目都是小数吗?是什么式题?

  (2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)

  2、进行类推。

  计算下列各题。

  (1)72×0。81+10。4(2)7。06×2。4—5。7

  学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。

  订正:(1)68。72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11。244(含有乘法与减法两种运算,先算乘法,再计算减法。)

  3、教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的`运算顺序与整数相同。板书:连乘、乘加、乘减

  教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。

  三、整数乘法运算定律推广到小数

  1、复习。

  教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?

  教师贴出:a×b=b×a

  (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c

  提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)

  2、观察讨论。

  教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。

  0。7×1。2○1。2×0。7

  (0。8×0。5)×0。4○0。8×(0。5×0。4)

  (2。4+3。6)×0。5○2。4×0。5+3。6×0。5

  让学生观察这三组算式,并讨论以下问题

  (1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?

  (2)等号两边的算式有什么特点?与我们学过的什么知识一样?

  (3)你能得出什么结论?

  学生通过讨论将得出如下结论

  ①三组算式左右两边的结果相等,中间可以用等号连接。

  ②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。

  ③整数乘法运算定律在小数中同样适用。

  教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)

  3、教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。

  板书:整数乘法运算定律推广到小数乘法。

  教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。

  四、巩固练习

  1、填空,并说一说应用了哪个运算定律。(填在书上)

  4。2×1。69=□×□

  2。5×(0。77×0。4)=(□×□)×□

  6。1×3。6+3。9×3。6=(□+□)×□

  2、计算下面各题。

  (1)19。4×6。1×2。3

  (2)3。25×4。76—7。8

  (3)18。1×0。92+3。93

  (4)5。67×0。21—0。62

  (5)7。2×0。18×28。5

  (6)0。043×0。24+0。875

  教师巡视,注意学生的运算顺序是否存在问题。

  3、判断对错。

  (1)50。4×1。95—1。9(2)3。76×0。25+25。8

  =50。4×0。05 =0。9776+25。8

  = 25。2 =26。7776

  全体学生用手势判断,并说出错误原因。

  4、应用题。

  玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1。30元计算,一共可收入多少元?

  学生完成练习后,教师及时订正

  2。(1)272。182(2)7。67(3)20。582(4)0。5707(5)36。936(6)0。88532

  3。(1)运算顺序错误。改正:(2)计算错误。改正

  50。4×1。95—1。9 3。76×0。25+25。8

  =98。28—1。9 =0。94+25。8

  =96。38 =26。74

  4。1。30×6×285=2223(元)

  教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。

五年级数学教案11

  教学目标:

  1、通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题。

  2、让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

  3、培养学生利用恰当的方法解决实际问题的能力。

  教学重点:

  通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系。

  教学难点:

  通过复习,使学生能够准确的找出题目中的`等量关系。

  教学过程:

  一、复习准备。(P107)

  1、找出下列应用题的等量关系。

  ①男生人数是女生人数的2倍。

  ②梨树比苹果树的3倍少15棵。

  ③做8件大人衣服和10件儿童衣服共用布31.2米。

  ④把两根同样的铁丝分别围成长方形和正方形。

  (学生回答后教师点评小结)

  我们今天就复习运用题目中的等量关系解题。(板书:列方程解应用题)

  二、新授内容

  1、教学例题

  (1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

  ①、读题,学生试做。

  ②、学生汇报(可能情况)

  (90+75)×4

  提问:90+75求得是什么问题?再乘4求的是什么?

  90×4+75×4

  提问:90×4与75×4分别表示的是什么问题?

  (由学生计算出甲乙两站的铁路长多少千米。)

  (2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

  (先用算术方法解,再用方程解)

  ①、660÷(90+75)=?

  ②、方程

  解:设经过x小时相遇,

  (90+75)×x =660或者,90×x +75×x =660

  让学生说出等量关系和解题的思路

  教师小结(略)

  (3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

  (先用算术方法解,再用方程解)

  ①、(660—90×4)÷4=?

  ②、方程

  解:设货车每小时行x千米

  90×4+ 4x = 660或者(90 + x)×4 = 660

  让学生说出等量关系和解题的思路

  2、教师小结(略)

  让学生比较上面三道应用题,它们有什么联系和区别?

  比较用方程解和用算术方法解,有什么不同?

  教师提问:这两道题有什么联系?有什么区别?

  三、巩固反馈。(P109———1题)

  1、根据题意把方程补充完整。

  (1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看。

  _____________=53

  _____________=116

  (2)妈妈买来3米花布,每米9。6元,又买来x千克毛线,每千克73.80元。一共用去139.5元。

  _____________=139.5

  _____________=9.6×3

  (3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米。

  _____________=280×3

  2、(P110————4题)解应用题。

  东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨。剩下的煤如果每天烧1.1吨,还可以烧多少天?

  小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法。

  3、思考题。

  甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港。客船开出12小时后与货船相遇。如果货船每小时行15千米。客船每小时行多少千米?

  四、课堂总结。

  通过今天的复习,你有什么收获?

  五、课后作业。

  (P110———5题)不抄题,只写题号。

  板书设计:

  列方程解应用题

  等量关系具体问题具体分析

  例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。

五年级数学教案12

  教学内容:小数四则混合运算和简便算。

  教学目标:

  通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。

  教学过程:

  一、挂出小黑板视算。

  4.8÷81.6÷0.412.12÷120.32÷0.4

  4÷0.51÷250.25×400.13×5

  2.5×4÷40.1×0.8÷1004.2÷0.6÷7

  0.125×1.5×88.4÷8.4+61-0.25÷0.5

  二、先说出运算顺序,再计算。

  课本第34页的第7题,请4个学生板演后,师讲评。

  比一比,看谁算得又对又快。把得数直接填在课本第35页的第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。

  三、简便计算。

  引导学生看课本第34页的第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)

  整数的.运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。

  四、幻灯演示课本第36页的第7题。

  这是一张不完整的发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。

  五、独立作业

  第35--36页的第5、6题。

五年级数学教案13

  教学内容:冀教版《数学》五年级上册第10、11页。

  教学目标:

  1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。

  2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。

  3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。

  教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。

  教学方案:

  教学环节

  设计意图

  教学预设

  一、创设情境

  1.学生阅读书中的文字,初步了解莫比乌斯圈。

  2.拿出一张纸条让学生估计它的长和宽。

  二、探索活动1

  1.师生一起动手制作莫比乌斯圈。

  教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。

  2.交流、展示学生作品。

  3.提出涂色要求,学生涂色。鼓励学生合作完成。

  4.观察、交流学生涂色的结果,让学生说一说发现了什么?

  三、探索活动Ⅱ

  1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。

  2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。

  3.交流沿中线剪开后的结果。

  4.提出书中(2)的操作要求,让学生想象剪开后的结果。

  5.鼓励学生按要求实际操作。

  6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。

  四、课外延伸

  教师进行激励性谈话,鼓励学生课下继续探索

  通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。

  培养估计的意识,了解纸条的长和宽,方便下面的语言表述。

  通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。

  展示学生的作品,检查莫比乌斯圈做的是否正确。

  让学生经历探索莫比乌斯圈的全过程。

  通过自己动手做莫比乌斯圈,亲身体验它的神奇。

  通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。

  通过让学生想象猜测,一方面培养学生联想的意识,更重要的是引出探索的活动。

  在操作结果和提供的数据中,让学生感受莫比乌斯圈的神奇和数学活动的探索性。

  在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。

  带着问题进行实际操作,体验数学问题的探索性。

  在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的神奇和数学活动的趣味性。

  激发学生的探索的积极性,培养科学探索精神。

  师:同学们,今天我们就用老师给大家准备的`纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。

  学生阅读书中的文字。

  师:通过读书,你了解到哪些信息?

  学生回答可能不同,只要是意思对就给予肯定。

  师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。

  师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?

  学生估计,对估计准确给予表扬。使大家知道:纸条的长30厘米,宽3厘米。

  师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。

  教师边说边示范制作莫比乌斯圈。

  师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!

  学生动手制作,教师巡视指导。

  师:谁来展示一下你的莫比乌斯圈?

  学生展示,关注是否都对。

  师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。

  学生给莫比乌斯圈涂色,教师巡视指导。

  师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?

  生:两面都有颜色了。

  生:太奇怪了。

  师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!

  教师板书:神奇的莫比乌斯圈。

  师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。

  学生操作,教师巡视指导。

  师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?

  生:会得到2个莫比乌斯圈。

  师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。

  学生操作,教师巡视指导。

  师:沿中线剪开后怎样?和你想象的结果一样吗?

  学生可能回答:

  ●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。

  ●这个新的纸圈比原来的大了。

  ……

  师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?

  学生可能回答:

  ●得到一个更大的纸圈。

  ●得到3个纸圈。

  ……

  师:请同学们实际动手做一做,看一看结果会怎样?

  学生动手操作,教师巡视指导。

  师:这次剪开后结果怎么样?

  生:得到了一大一小两个套在一起的纸圈。

  师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!

五年级数学教案14

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的'数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学教案15

  1、教学目标

  1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

  2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  2、学情分析

  从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  3、重点难点

  教学重点:

  体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

  教学难点:

  观察者角度的理解,方格线上和方格中位置描述的异同理解。

  4、教学过程

  4.1教学过程

  4.1.1教学活动

  活动1【讲授】用数对确定位置

  一、探讨描述位置两要素

  师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

  第一关:找地鼠

  师:请描述小地鼠的位置。

  师:还能怎么说?

  生:从右往左数第2个。

  师:这只地鼠的位置呢?

  生:从上往下数第3个,从下往上数第2个。

  师:看来,描述一条线上的位置,我们只需要一个数。

  师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

  师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

  师:你来说,谁有不同的说法,还有吗?

  师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

  师:(面向猜的同学)听了这么多说法,能猜到位置吗?

  师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

  师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

  二、从列和行引出数对确定位置

  师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

  师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

  师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的`观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

  师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

  师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

  师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

  师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

  师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

  师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

  师:这些都是张亮位置的描述方法,你喜欢哪一种?

  (1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

  师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

  师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

  师:剩下的三个位置也用数对表示吧。写在草稿纸上。

  师:四个数对中有两个比较特别,谁来说?

  师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

  师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

  师:你是怎样判断的?

  师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

  三、点子图中的位置表示

  师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

  师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

  师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

  师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

  师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

  师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。

  师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

  四,数对的日常运用

  师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

  国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

  这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

  师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

  五、拓展总结。

  师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

  生:需要两个数。

  师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

  师:什么情况下我们用一个数就能确定位置?(直线上的)。

  师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

  师:听听X先生对大家的最终评价吧。

  师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

【五年级数学教案】相关文章:

五年级数学教案08-31

五年级数学教案01-13

五年级《分数的意义》数学教案08-29

五年级数学教案《小数》01-10

小学五年级数学教案08-25

小学五年级数学教案02-28

五年级数学教案设计10-22

五年级上册数学教案范文10-18

相遇问题的五年级数学教案01-22

五年级数学教案(精选10篇)12-26