高中数学学习方法6招

时间:2022-10-02 21:07:59 学习方法 我要投稿
  • 相关推荐

高中数学学习方法6招

  高中各科目的学习对同学们提高综合成绩非常重要,大家一定要认真掌握,小编为大家整理了高中数学学习方法6招,希望同学们学业有成!

高中数学学习方法6招

  一、“弃重求轻”,培养兴趣

  女生数学能力的下降,环境因素及心理因素不容忽视。目前社会、家庭、学校对学生的期望值普遍过高。而女生性格较为文静、内向,心理承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降。因此,教师要多关心女生的思想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定学习计划,清除紧张心理,鼓励她们“敢问”、“会问”,激发其学习兴趣。同时,要求家长能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心。事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的。

  二、“开门造车”,注重方法

  在学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,复习时喜欢看课本和笔记,但忽视上课听讲和能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差。因此,教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力。

  三、“笨鸟先飞”,强化预习

  女生受生理、心理等因素影响,对知识的理解、应用能力相对要差一些,对问题的反应速度也慢一些。因此,要提高课堂学习过程中的数学能力,课前的预习至关重要。教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求女生强化课前预习,“笨鸟先飞”。

  四、“固本扶元”,落实“双基”

  女生数学能力差,主要表现在对基本技能的理解、掌握和应用上。只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力。因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。

  五、“扬长补短”,增加自信

  在数学学习过程中,女生在运算能力方面,规范性强,准确率高,但运算速度偏慢、技巧性不强;在逻辑思维能力方面,善于直接推理、条理性强,但间接推理欠缺、思维方式单一;在空间想象能力方面,直觉思维敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,“解模”能力较强,但“建模”能力偏差。因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心。特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养想象力;揭示实际问题的空间形式和数量关系,培养“建模”能力。

  六、“举一反三”,提高能力

  “上课能听懂,作业能完成,就是成绩提不高。”这是高中阶段女生共同的“心声”。由于课堂信息容量小,知识单一,在老师的指导下,女生一般能听懂;课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,她们能完成。但因速度和时间等方面的影响,她们不大注重课后的理解掌握和能力提高。因此,教学中要编制“套题”(知识性,技能性)、“类题”(基础类,综合类,方法类)、“变式题”(变条件,变结论,变思想,变方法),并对其中具有代表性的问题进行详尽的剖析,起到“举一反三”、“触类旁通”的作用,这有利于提高女生的数学能力。

  本文就是为大家整理的高中数学学习方法6招,希望能为大家的学习带来帮助,不断进步,取得优异的成绩。

  高中数学学习:遇上不会做的题怎么办

  【摘要】鉴于大家对高中频道十分关注,小编在此为大家搜集整理了此文“高中数学学习:遇上不会做的题怎么办”,供大家参考!

  高中数学学习:遇上不会做的题怎么办

  一问:要不要把全卷看一遍?

  拿到卷子以后看一下,是看考卷一共几页,多少道题一定要先知道,千万不能落题和落页。关于是否要把全卷的题目全看一遍,同学们按自己的习惯来做,没有对错之分。一模二模你们怎么做的,高考还是怎么做,不要改变你的习惯做法。对于第一场考试的语文试卷,我个人的意见是作文题要看一看的,看了作文,心里有数,等到真正开始作文的时候再细细考虑。

  二问:如何提高一卷的得分率?

  一卷是客观性试题,即选择题和判断题等。一般说,我们的第一判断力非常重要,推翻第一判断一定要谨慎。提高一卷的得分率,同学们第一要重视第一判断,第二要基础扎实,第三要加强抗干扰能力。调查显示:一卷前5题的错误率比较高,因为一开始考生一般心情比较紧张,所以提醒大家,在心情恢复正常时要着重检查一下前5题。英语一卷有听力,占总分比例是挺高的,所以大家一定要谨慎对待。

  三问:遇上不会做的题怎么办?

  高考是选拔考试,碰到难题是非常正常的。碰到不会做的题不要紧张,要想到,我不会做,那好多人也未必会做。一定要稳定心态。

  四问:有的题可以上手,但做半截又不会了,怎么办?

  碰到这样的题不要慌,仔细审题,能做一步做一步,能做两步做两步。高考试题题题设防,题题把关,评分按步计分,中档题做对一步给一步的分。心态一定要放松,不可能一道题会做,就一定能做到底。高考考题看重的是区分度。

  五问:最后一题是最难的吗?

  不一定。高考试卷有一个长度,指题量的答题时间的一个参数:中等程度以上的同学在规定的时间内能答完试题。所以答不完卷子的情况也是正常的,但是,最后一道题不要不看,能做几步做几步,能得几分得几分。

  六问:要不要最后检查一下全卷?

  相当一部分同学在规定时间内答不完题,但一定要留下15分钟左右时间检查全卷。往往检查一遍,能检查出一个错误,从而多得几分,这也是高考成功的一个重要方法。

  七问:有没有一个具体的答题要领?

  基本的答题要领是:慢做会的求全对,稳做中档题一分也不浪费,舍去全不会。会做的题慢慢做,保证全对。中档题可以上手,高考按步计分,做一步给一步分。中档题能做一步就做一步。舍去全不会指的是难题,不是说一看不会就舍去。认真看认真思考,确实不会再舍去。

  对称——自然美的基础

  在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。它们引起人们的注意,令人赏心悦目。每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。

  花朵具有旋转对称的性征。花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。旋转时达到自相重合的最小角称为元角。不同的花这个角不一样。例如梅花为72°,水仙花为60°。“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。我国最早记载了雪花是六角星形。其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。既是中心对称,又是轴对称。

  很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的初始位置重合。例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。这种有趣的现象叫叶序。向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。

  “晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。

  考生有针对性制定复习策略 数学复习方法

  在班上课的时候有很多同学问我到底应该怎么?怎么样的才是科学高效的?我想这是一个很多考生都普遍关心的问题,那么请问:复习的目的是什么?毫无疑问,当然是高考取得高分。这里再次提醒大家注意的是两种常见的糊涂:之一,已经进入复习了,甚至直到高考结束了,仍不清楚高考都考什么?那些是重点?其表现就是,一天到晚整天就是做题,还是做题,漫无边际地沉醉于题海中,直到考完才意识到自己做了太多太多的无用功。

  其二不重视课本教材,表现就是在整个高考复习期间从来没有去翻过课本,直到在高考后才发现有很多高考题就源自于课本,于是追悔莫及。那么到底应该怎么做才能达到最好的效果呢?那么在我们进行高考复习之前就必须要对数学高考的结构、考点分布、题型分布、命题思路、解题要求、答题策略等等进行全面深入地了解,有针对性地制定有效的复习策略,再分阶段、分层次、分专题逐步实施。

  首先,无论从还是从现实上看,高考命题都具备较高稳定性的特点。因此,我们可以从历届高考试题中分析得出高考命题的许多信息。

  数学高考的题型有三种:

  一是选择题。

  选择题的解题要求是选判结果、不要过程。就是说,只需判断选择备选答案的对错,而省去了解题思路的探索、解题策略的制定、解题工具的选择以及解题过程的实施等细节,只判结果、不要过程。由此提出的解题要求是:选择题的解答一定要符合“快、准、巧”的要求,最忌讳的是“小题大做”。一道选择题的解答时间只有三分钟左右,超出三分钟时间即使能够得出正确答案也是罔然。因此仅仅停留在会解能解的层次上是远远不够的,选择题的答题要求是必须“快速、准确、巧妙”的选判正确答案,而千万别把小题弄成大题解答。

  二是填空题。

  填空题的解题要求是只要结果、不要过程,而最常见的错误是答案不够“完整、严密”。

  三是解答题。

  解答题的最大特点是综合性,你不能把什么题都拿来作为解答题。解答题的范围类型目前主要包括:第一,平面向量、三角函数;第二,概率(分布列)与统计(直方图);第三,空间向量、立体几何;第四,函数、导数综合;第五,解析几何;第六,数列、或不等式与函数或解析几何的综合。有两个新的命题趋势在被不少同学因各种原因或理由而忽视掉了。具体说:一是空间向量的综合运用,二是函数导数的综合运用。有些同学没有把这两部分内容全面深入地渗透到原有各个部分内容的解题中,而是把这两部分内容仍然孤立地与原有内容隔离开来。要清醒地认识到,空间向量和函数导数在原有内容的基础上,给我们带来了崭新的简洁实用的解题工具,理应引起我们的高度关注。解答题的解题要求是:解题思路清晰(为此可以适当跳步而保持思路的完整清晰),解题过程切忌过于琐碎;选择合适的解题工具;制定合理的解题策略;选择简洁的解题方法。

  一轮复习的目的是:全面全力夯实基础,切实掌握选择填空题的解题规律,在历次测验中确保基础部分得,也就是把该得的分数确实拿到手。在一轮复习中,所有同学都要集中全力闯过选择填空题的基础关,否则在高考中很难越过一百分。现实中,很多同学从一开始便投入到漫无目的的、五花八门的、各式各样的题海中。为了在一轮复习中达到此目的,基础稍差些的同学完全可以主动放弃大型的、复杂的综合体的演练,把节省下来的时间和精力再次投入到选择填空题上来,以此进一步夯实基础;而基础好一些的同学,也不要把太多的、主要的精力大面积地投入到解答题上来,而是要分专题、分阶段每天都少量地但是细致地深入地研究一两道大解答题,在解答题上慢慢地、逐步地积累解题经验和解题规律,切不可把摊子铺大。要知道解答题的解题经验和解题规律积累是一个逐步的、漫漫的由量变到质变的过程,坚持重于冲击。

  二轮复习的目的是:争取分数超过130分。在这个阶段主要是把解答题所涉及到的内容加以综合运用,同时进一步深化高考中常见的数形结合、分类讨论、转化与化归以及函数与方程等数学思想,其核心则是综合、创新的培养提高。采取的具体办法就是分阶段、分专题、逐一攻破,但最关键的还是在于长期的一点一滴的积累,不断地总结积累常见类型题的解题经验和解题规律。

  三轮复习的目的是:通过实战模拟,摸索、演练、积累有关答题节奏、答题策略等的经验以及应对出现意外考题的策略,此外还有考试心态的进一步调整等。分析造成考试分数出现大幅度下滑的客观的主要原因,一个是该拿的分数没拿到,二是非因素严重干扰。要知道非因素调整的好,可以让你发挥超出平时的水平;而非因素调整的不好,就会使让你发挥不出平时的水平。

  2016年高考数学命题预测之解析几何

  【编者按】(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。

  (2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点, 对支撑数学科知识体系的主干知识, 考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:

  ① 求曲线方程( 类型确定、类型未定);

  ②直线与圆锥曲线的交点问题(含切线问题);

  ③与曲线有关的最(极)值问题;

  ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);

  ⑤探求曲线方程中几何量及参数间的数量特征;

  (3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

  (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。

  《2.1 点、直线、平面之间的位置关系》测试题

  一、选择题

  1.(2011四川),,是空间三条不同的直线,则下列命题正确的是( ).

  A.⊥,⊥?∥ B.⊥,∥?⊥

  C.∥∥?,,共面 D.,,共点?,,共面

  考查目的:考查空间中直线与直线的位置关系及有关性质.

  答案:B.

  解析:在空间中,垂直于同一直线的两条直线有可能相交或异面,故A错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.

  2.若三个平面两两相交,有三条交线,且三条交线互相平行,则这三个平面把空间分成( ).

  A.5部分 B.6部分 C.7部分 D.8部分

  考查目的:考查空间平面的位置关系和空间想象能力.

  答案:C.

  解析:如图所示,三个平面,,两两相交,交线分别是,,,且∥∥.观察图形,可得,,把空间分成7部分.

  3.(2010重庆文)到两条互相垂直的异面直线的距离相等的点( ).

  A.只有1个 B.恰有3个 C.恰有4个 D.有无穷多个

  考查目的:考查异面直线的概念、性质和空间想象能力 高二.

  答案:D.

  解析:可以将异面直线放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D.也可以在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等.

  二、填空题

  4.(2010江西改编)过正方体的顶点A作直线,使与棱AB,AD,所成的角都相等,这样的直线可以作_______.

  A.1条 B.2条 C.3条 D.4条

  考查目的:考查空间直线所成的角概念与求法.

  答案:8.

  解析:如图,连结体对角线,显然与棱AB、AD,所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如连结,则与棱BC、BA、所成的角都相等,∵∥,BC∥AD,∴体对角线与棱AB、AD、所成的角都相等,同理,体对角线、也与棱AB、AD、所成的角都相等,过A点分别作、、的平行线都满足题意,故这样的直线可以作4条.

  5.正方体中,P、Q、R分别是AB、AD、的中点,那么,正方体的过P、Q、R的截面图形是 .

  考查目的:考查空间几何的公理3,判断空间点线的共面关系.

  答案:六边形.

  解析:如图,作RG∥PQ交于G,连接QP并延长与CB交于M,连接MR交于E,连接PE、RE为截面的部分外形.同理连PQ并延长交CD于N,连接NG交于F,连接QF,FG,∴截面为六边形PQFGRE.

  6.(2012安徽文)若四面体的三组对棱分别相等,即,,,则____________(写出所有正确结论编号).

  ①四面体每组对棱相互垂直

  ②四面体每个面的面积相等

  ③从四面体每个顶点出发的三条棱两两夹角之和大于而小于

  ④连接四面体每组对棱中点的线段互垂直平分

  ⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长

  考查目的:考查空间直线与直线的位置关系.

  答案:②④⑤.

  解析:①连接四面体每组对棱中点构成菱形;②四面体每个面是全等三角形,面积相等; ③从四面体每个顶点出发的三条棱两两夹角之和等于; ④连接四面体每组对棱中点构成菱形,菱形对角线垂直平分;⑤连结四面体棱的中点可得,该三角形三边分别等于长度的一半.

  三、解答题

  7.正方体中,E、F分别是AB和的中点.求证:

  ⑴E,C,,F四点共面;

  ⑵CE,,DA三线共点.

  考查目的:考查空间几何公理,会证明共线、共面问题.

  解析:⑴如图,连接EF,,.∵E、F分别是AB、的中点,∴EF∥.又∵∥,∴EF∥,∴E、C、、F四点共面.

  ⑵∵EF∥,EF<,∴CE与必相交.设交点为P,则由P∈CE,CE?平面ABCD,得P∈平面ABCD.同理P∈平面.又∵平面ABCD∩平面=DA,∴P∈直线DA,∴CE、、DA三线共点.

  8.A是△BCD平面外的一点,E,F分别是BC,AD的中点.

  ⑴求证:直线EF与BD是异面直线;

  ⑵若AC⊥BD,AC=BD,求EF与BD所成的角.

  考查目的:考查异面直线的判定,求异面直线所成角的基本方法.

  答案:⑴略;⑵.

  解析:⑴假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾,故直线EF与BD是异面直线. ⑵如图,设G为CD的中点,连接EG、FG,则EG∥BD,所以相交直线EF与EG所成的,即等于异面直线EF与BD所成的角.同理即为异面直线AC和BD所成的角,又∵AC⊥BD,∴为直角,在Rt△EGF中,由EG=FG=AC,求得∠FEG=,即异面直线EF与BD所成的角为.

  逻辑学悖论--说谎者悖论

  高一

  M:我们陷入了著名的说谎者悖论之中。下面是它的最简单的形式。

  甲:这句话是错的。

  M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。

  们是否能够解释,为什么这类悖论采用上述形式表达(即一句话谈的正是它本身)就变得清晰起来?这是因为它消除了说谎者是否总是说谎,不说谎者总是说真话。

  这一悖论作这类变化是无穷的。例如,罗素曾经说,他相信哲学家乔治·摩尔平生只有一次撒谎,就是当某人问他:是否他总是说真话时,摩尔想了一会儿,就说:“不是。”

【高中数学学习方法6招】相关文章:

高中数学学习方法11-28

高中数学常用的学习方法10-03

高中数学的几点学习方法10-22

高中数学函数的学习方法10-08

高中数学的学习方法指导10-03

关于高中数学的学习方法10-05

高中数学的特点与学习方法10-03

高中数学提高学习方法10-04

高中数学必读学习方法10-04

谈高中数学的学习方法10-04