- 相关推荐
五年级奥数应用题练习题及答案
在日复一日的学习、工作生活中,我们很多时候都会有考试,接触到练习题,只有多做题,学习成绩才能提上来。学习就是一个反复反复再反复的过程,多做题。还在为找参考习题而苦恼吗?下面是小编为大家整理的五年级奥数应用题练习题及答案,希望能够帮助到大家。
五年级奥数应用题练习题及答案 1
1. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?
2. 如果四位数6□□8能被73整除,那么商是多少?
3. 求各位数字都是 7,并能被63整除的最小自然数。
4. 1×2×3×…×15能否被 9009整除?
5. 能否用1, 2, 3, , 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
6. 有一个自然数,它的最小的两个约数之和是,最大的两个约数之和是100,求这个自然数。
7.100以内约数个数最多的自然数有五个,它们分别是几?
8. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
9. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
10. 三个连续自然数的最小公倍数是168,求这三个数。
参考答案
1. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?
解:1000-1=999
997-995=992
每次减少7,999/7=12……5
所以下面减上面最小是5
1333-1=1332 1332/7=190……2
所以上面减下面最小是2
因此这个差最小是2。
2. 如果四位数6□□8能被73整除,那么商是多少?
解:估计这个商的十位应该是8,看个位可以知道是6
因此这个商是86。
3. 求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数)
4. 1×2×3×…×15能否被 9009整除?
解:能。
将9009分解质因数
9009=3*3*7*11*13
5. 能否用1, 2, 3, , 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
解:不能。因为1+2+3++5+6=21,如果能组成被11整除的六位数,那么奇数位的`数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
6. 有一个自然数,它的最小的两个约数之和是,最大的两个约数之和是100,求这个自然数。
解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大
7.100以内约数个数最多的自然数有五个,它们分别是几?
解:如果恰有一个质因数,那么约数最多的是26=6,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=8和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,8,90和96。
8. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
解:6,10,15
9. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:2份;每份有苹果8个,桔子6个,梨5个。
10. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
五年级奥数应用题练习题及答案 2
1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的.。速度应为多少?
解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?
解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米).
五年级奥数应用题练习题及答案 3
1、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。已知下坡路每小时行20千米,那么上坡路每小时行多少千米?
【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时
回的上坡时间+回的下坡时间=3.5小时
则:来回的上坡时间+来回的下坡时间=8小时
所以来回的下坡时间=60÷20=3(小时)
则:来回的`上坡时间=8-3=5(小时)
故:上坡速度为60÷5=12(千米/时)
2、两辆汽车同时从两地相对开出,沿同一条公路行进.速度分别为80千米/小时和60千米/小时,在距两地中点30千米的某处相遇.两地相距多少千米?
【解析】两人相遇时快车比慢车多行了30×2=60千米,则两车共行驶60÷(80-60)=3小时,两地相距(80+60)×3=420千米
五年级奥数应用题练习题及答案 4
1、甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。已知摩托车开始的速度是每小时50千米,中途减为每小时40千米;汽车的.速度是每小时80千米,并在途中停留10分钟。那么,张山骑摩托车在出发分钟后减速。
答案与解析:
汽车行驶了100÷80×60=75(分)
摩托车行驶了75+60+10=145(分)
设摩托车减速前行驶了x分,则减速后行驶了(145-x)分。
5x+580-4x=600
x=20(分)
2、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?
解:甲车到达终点时,乙车距离终点40×1=40千米
甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时
两地距离=40×5=200千米
【五年级奥数应用题练习题及答案】相关文章:
奥数的作文07-06
实用我学奥数的心得10-18
爸爸教我学奥数的作文08-07
我的奥数老师优秀作文12-30
活力青奥,青春南京我期待的青奥作文02-22
环保青奥作文04-17
南京青奥作文07-07
青奥会作文08-07
我期待的青奥作文02-22
文明迎青奥作文02-23