数学六年级教案

时间:2025-10-20 09:31:27 数学教案 我要投稿

数学六年级教案

  作为一无名无私奉献的教育工作者,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的数学六年级教案,希望能够帮助到大家。

数学六年级教案

数学六年级教案1

  【教学目标】

  使学生进一步认识用字母表示及其作用,能正确的用含有字母的式子表示数量及数量关系。

  【重点难点】

  能正确的用含有字母的式子表示数量及数量关系、计算公式等。

  【教学准备】多媒体课件,实物投影。

  【谈话导入】

  1、看到这些字母,你能立刻想到什么?

  课件出示:

  BTVsoskgNBA……

  同学们能很快的说出这些字母或字母组合表示的意义吗?说明字母在生活有一定的地位和作用。

  2、揭示课题:这节课我们就来学习式与方程。(板书课题)

  【复习讲授】

  复习字母表示数

  1、结合谈话导入说说用字母表示数有什么优越性?

  教师:用字母能简明的表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

  2、请同学们完成下面的练习。

  (1)填空。(课件出示)指名板演,其余学生写在练习本上。

  ①用s表示路程,v表示速度,t表示时间,那么s=()。

  ②b乘5、6可以写作(),还可以写作();a乘h可以写作(),还可以写作()。

  ③a、b、c、d表示非0自然数,那么分数乘法的计算方法可以用字母表示()。

  (2)订正后提问:在写含有字母的式子时需要注意什么问题?

  3、师生共同总结在写含有字母的式子时应注意的问题:

  (1)在含有字母的式子里,数和字母中间的.乘号可以记作“?”也可以省略不写。

  (2)省略乘号时,应当把数字写在字母的前面。

  (3)数与数之间的乘号不能省略。加号、减号、除号都不能省略。

  4、巩固练习。

  (1)完成教材第81页的第一个“做一做”。

  (2)根据题意写出各式表示的意思。

  一种滚筒式洗衣机,单价a元,商城第一天卖出m台,第二天卖出9台。

  m-9表示()m+9表示()

  ma表示()9a表示()

  (m+9)a表示()(m-9)>a表示()

  答案:

  (1)

  (2)第一天比第二天多卖出的台数

  第一天和第二天一共卖的台数

  第一天卖的钱数

  第二天卖的钱数

  两天一共卖的钱数

  第一天比第二天多卖的钱数(或第二天比第一天少卖的钱数)

  【课堂作业】

  教材第82页练习十六第1、2题。

  学生独立完成,教师要求学生自己检验。

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  完成练习册中本课时的练习。

  第8课时式与方程(1)

  在写含有字母的式子时应注意的问题:

  1、在含有字母的式子里,数和字母中间的乘号可以记作“?”,也可以省略不写。

  2、省略乘号时,应当把数字写在字母前面。

  3、数与数之间的乘号不能省略。加号、减号、除号都不能省略。

数学六年级教案2

  教材简析:

  本堂课教学用假设的策略来解决问题.例2是一个类似"鸡兔同笼"的问题通过解决这个实际问题,让学生进一步体会假设策略在不同情景中的应用特点和思考过程.在例1的基础上,本堂课在呈现问题后,直接提出:你准备怎样来解决这个问题?启发学生在讨论中主动想到假设的策略.然后分别通过画图和列表呈现了两种不同的假设方法.通过对假设后数量关系的变化情况进行研究,从而推算出正确的答案.让学生在对解决问题过程的反思中,进一步明确应该如何来实施这个假设的策略。

  教学目标:

  1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、定解题思路,并有效的解决问题。

  2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  使学生理解并运用假设的策略解决问题。

  教学难点:

  当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

  教学过程:

  一、导入:

  1.回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?

  根据学生回答板书:画图、列表、倒推、替换

  2.提出课题:利用这些策略可以方便地帮助我们解决一些实际问题。今天,我们继续来研究解决问题的策略。(揭题)

  [设计意图:这段谈话主要是帮助学生回想起一些学过的策略,以便在后面的学习中能让学生进行有目的的迁移。]

  二、新课:

  1、创设情景,提出假设

  (边描述边出示例题)上次秋游,我们去了黄山湖公园,五(1)班的42位同学去划船,他们一共租用了10条船,正好坐满。每只大船能坐5人,每只小船能坐3人。你知道他们分别租用了几条大船和几条小船吗?

  提问:你准备怎样来解决这个问题?

  学生可能一下子想不到提出假设,这时可提示学生:在解决例1时,碰到这样的问题我们可以先怎样想?

  学生独立思考交流想法。

  根据学生回答出示各种假设:

  a、假设10只都是大船

  b、假设10只都是小船

  教师:你们的想法都是把船假设成同一种船。还有其他想法吗?

  c、假设5只大船,5只小船。

  教师:你和他们不同,是把船假设成不同的船

  [设计意图:对假设策略的提出是学生遇到的第一个困难,我们利用以前学过的知识,来引导帮助学生想到假设的策略,并且使学生明确可以从两个角度提出假设:可以都假设成同一种船,也可以假设成两种不同的船,这里需要老师作充分的引导。]

  2、借助画图,初步感知调整策略

  谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。

  (1)讨论画图:

  a.如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?(学生说不出来可以追问:想想,上节课我们是用什么策略把数量关系清晰的表达出来的?)学生回答:画图

  b.你准备怎么来画呢?引导学生:用简明的符号来表示船和人(课件出示10只大船图,并给学生也提供10只大船图)

  (2)研究调整:

  a.发现矛盾引发思考:

  问题1:假设10只船都是大船,从图上我们可以看出能多坐几个人呢?为什么会多出来呢?

  学生独立思考并小组交流

  反馈明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人(板书:多出8人)

  b.借助画图,研究调整:

  问题2:那需要把几只大船调整为小船,才能使10只船正好坐42人呢?)(板书:大船→小船)

  先想一想,然后再图上画一画。(学生在提供的图上画一画,教师巡视)

  集体交流:选择比较典型的2种画法,上台展示并让学生说说想法

  追问:你是怎么想到把4条大船调整为4条小船的呢?

  帮助学生初步感知调整策略:一条小船看成一条大船会多出2人,多出的8人正好是4个2人,所以要把4条大船调整为4条小船。

  板书:5-3=2(人)

  8÷2=4(条)

  3、借助列表,再次感知调整策略

  谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)这位同学把10只船假设成5只大船和5只小船这样两种不同的船,那接下来我们就借助以前学过的列表的方法来试着推算大船和小船各有多少只。

  (1)设计表格:(出示空表格)这张表格中需要哪些数量呢?完善表格项目

  大船只数

  小船只数

  总人数

  与42人相比

  5×5+3×5=40

  少了2人

  (2)借助表格调整:

  a.填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少2人)

  b.引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。

  c.集体交流,得出方法:

  学生展示方法:

  方法优化:选取一次调整成功的追问:你是怎么想的呢?

  引导学生:少2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多做2人,2÷2=1(条),所以调整为小船4条,大船6条。(板书:小船→大船,2÷2=1(条))

  4、检验结果

  刚才我们算出了有6只大船4只小船,那是不是正确的结果呢?你有办法检验吗?

  学生口答,老师板书算式:6×5+4×3=42(人)

  6+4=10(条)

  5.还有其它方法吗?想一想,在小组里交流一下。

  [设计意图:如何进行调整是本课学习的难点,这里的调整与例1相比学生独立完成的难度比较高,所以在解决假设成同一种船初步感知调整策略时,需要老师适时地站出来引领学生进行探索,通过一些有效的追问,来帮助学生建立一个个解决问题的台阶,使他们的研究有强力的后盾。在老师引导下进行了初步的研究,有了一定的思考能力,在接下来的解决假设成不同种船的问题时,老师只需要帮学生开一个头,把关键的问题抛给学生去研究、完成。这样老师引导探索和学生自主探索有机结合,帮助很好地学生突破难点,掌握方法,体验成功。]

  5、回顾整理,提炼策略

  同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?

  (1)引导学生整体回顾:先提出假设,假设后的总人数与实际人数不一样,这时就需要进行调整,我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:1.假设2.调整3.检验)

  (2)突破难点回顾:

  a.在借助画图和表格进行调整时,我们又是怎么想的呢?我们先算出假设与实际总数相差多少,再算算每一份相差多少,最后算出调整数量。(并逐一板书)

  b.你是如何确定需要把大船调整为小船,还是把小船调整为大船的呢?(结合板书使学生明确:人数多了,需要把大船调整为小船;人数少了,需要把小船调整为大船。)

  [设计意图:学生在解决实际问题的过程的假设的策略有了初步的体验,这时通过引导学生进行两个层次的回顾反思,帮助学生及时提炼用假设策略解决实际问题的步骤,针对学习难点如何调整的反思,更有利于学生今后独立运用策略解决实际问题能力的提高。]

  三、练习:

  1.运用策略解决鸡兔同笼问题——巩固画图调整的策略

  谈话:下面我们就用这样的策略来解决一些问题。

  a.出示:练一练1的题目

  b.要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)

  c.如果假设都是鸡,可以怎样借助画图进行调整来解决这个问题?有困难的学生利用书上的提示来独立完成。

  d.交流:谁来想大家交流一下你是怎么做的,又是怎么想?

  让学生完整说一说,是怎样画图、调整,来推算出结果的)

  2.渗透估计意识,优化策略——巩固表格调整的策略

  谈话:刚才大家利用假设的.策略解决了非常有名的“鸡兔同笼”问题,其实在生活中有很多这样的问题,六年级的同学就遇到了一些问题,我们一起来看看,能不能帮助他们解决。

  a.练一练2,出示题目:估一估:可能会是各几块?你是怎么想的?

  b.你估计的怎样?我们就把你估计的结果作为你的一种假设,你准备借助什么方法来帮助你调整解决这个问题呢?

  学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?

  通过学生的交流明白:数量多,画图起来不方便,用列表的方法比较方便。

  c.学生展示,集体交流,说说怎样通过列表、调整,来推算出结果。

  [设计意图:画图比较直观,但是对于数量多的情况,画图就比较麻烦了,这时列表的方法就更有优势了,为了让学生体会这一点,在练习2中,先让学生对策略作出选择,在交流中,让学生感受到列表的方法更便于我们解决一些数据比较复杂的问题。]

  五、小结反思,分享收获

  今天,我们学习了解决问题的策略,你有什么收获呢?

  引导学生从以下几点反思:

  1.用假设的策略可解决怎样的实际问题?

  2.如何用假设的策略解决实际问题?重点引导学生说说如何通过画图、列表进行调整来推算结果呢?

  3.怎样根据实际情况选择画图或列表的方法?

  4.在本课的学习中还有什么其它的收获和体验?

  [设计意图:一节课下来,引导学生进行回顾与反思,对学生是很有必要的,而对于六年级的学生来说,不但要养成反思的意识,更要学会如何去进行反思,这样一种能力是需要在老师一定的问题引领下,在一次次地反思与交流中培养出来的。]

数学六年级教案3

  第一课时:直方图(1)。

  学习目标:了解频数分布表的制作步骤。

  重点、难点:频数分布表的制作。

  学习过程:

  问题一:下面数据是截止20xx年费尔兹奖得主获奖时的年龄:。

  293935333928333531313732。

  383631393238373429343832。

  353633293235363739384038。

  373938343340363637403138。

  请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.

  解:1.计算极差(最大值与最小值的差):。

  2.决定组距与组数:。

  3.列频数分布表:。

  年龄分组划记频数。

  合计。

  4.画出频数分布直方图。

  课堂练习:

  1、光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):。

  将数据适当分组,绘制频数分布直方图。

  2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:。

  (1)全班有名同学;。

  (2)组距是,组数是;。

  (3)跳绳次数在范围的同学有人,占全班同学%;(精确到%)。

  (4)画出适当的统计图表示上面的信息;。

  (5)你怎样评价这个班的跳绳成绩?

  3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.

  组别次数x频数(人数)。

  第1组801006。

  第2组1001208。

  第3组120140a。

  第4组140。

  第5组160。

  请结合图表完成下列问题.

  (1)表中的a=______.

  (2)请把频数直方图补充完整.

  (3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.

  第二课时:直方图(二)。

  学习目标:能正确画出频数分布直方图和画频数折线图。

  重点、难点:能正确地画出频数分布直方图。

  学习过程:

  解:(1)计算极差:(4)画频数分布直方图和频数折线图:

  (2)决定组数和组距:

  (3)列频数分布表:

  平行线及平行公理。

  教学建议。

  1、教材分析。

  (1)知识结构。

  本节从实例中概括出平行线的'概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.

  (2)重点、难点分析。

  本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.

  本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.

  另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.

  2、教法建议。

  (1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.

  (3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.

  (4)平行公理及其推论。

  在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.

数学六年级教案4

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话导入

  同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。

  ⊙实践与操作

  1.明确提出活动要求。

  “有趣的平衡”活动由三部分组成。

  (1)制作实验用具。

  (2)探索规律,体验“杠杆原理”。

  (3)应用规律,体会反比例关系。

  2.小组合作,自主活动。(教师巡视,适当点拨)

  3.展示制作实验用具情况。

  4.汇报探索到的规律。

  观察实验二、实验三的操作过程,你有什么发现?

  预设

  生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。

  生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。

  生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。

  生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。

  5.活动小结。

  “左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的'那个点就是杠杆的支点。

  ⊙典型例题解析

  你能利用杠杆原理算出左边物体的质量吗?

  分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。

  解答 500×5÷2=1250(g)

  ⊙探究活动

  1.课件出示探究内容。

  星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?

  2.小组讨论、分析、解答。

  3.交流、汇报。

  (答案不唯一)

  ⊙全课总结

  通过本节课的学习,你有什么收获?

  ⊙布置作业

  找一找生活中还有哪些地方应用了杠杆原理。

  板书设计

  有趣的平衡

  有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。

数学六年级教案5

  一、学生基础:

  5以内各数,在整数集合中是最为简单的几个,1--5的认识。由于数小,抽象程度较低,儿童理解也比较容易,大部分儿童在入学前对5以内的各数已有了一定的认识,根据1-5各数的特点和儿童的生活经验,将1-5的认识集中起来学习,符合儿童的认知规律。

  二、作用:

  此教学内容,主要是通过让学生初步经历从日常生活中抽象出数的过程,为学生了解数学的用处和体验数学学习的乐趣打下扎实的基础。

  三、教学要求:

  1、经历从生活情境中抽象出1—5各数的过程,认识1—5,会读、写1—5各数。

  2、培养学生初步的观察能力和动手操作能力,能按顺序用数描述物体的个数并进行交流。

  3、体验与同伴互相交流学习的乐趣。

  4、会用5以内的数描述生活中物体的个数,体会数存在于日常生活中,初步建立数感。

  四、教学过程:

  (一)激情引趣

  谈话:小朋友们喜欢动物吗?我们一起到动物园游一游。(出示:大象1只、犀牛2头、长颈鹿3只、小鸟4只……)

  这么多可爱的动物中,你喜欢那一种?数清你所喜欢的动物的个数,用相同个数的小圆片表示出来。

  与组内的小朋友说说:你喜欢的动物是什么?你是用几个圆片来表示这种动物的只数的`?

  哪个小组的同学愿意说说你喜欢的动物有几只?

  小结:小朋友们所摆出的圆片都在1—5之间,今天我们一起认识1—5,小学数学教案《1--5的认识》。

  (二) 动手操作,合作探究

  1、 摆一摆。

  提问:你能根据所摆圆片的个数,从你的学具卡片里找出相应的数字卡片吗?找一找,看谁找得对?

  组内同学相互评价摆的是否正确,请每组的一名代表上台摆出圆片和数字卡片,全班交流。

  2、 拨一拨。

  今天老师给小朋友们带来了一个新的学习伙伴——计数器。

  (教师拨上一粒珠子)问:我在计数器上拨了几粒珠子?(1个)又添了几个?(1个)现在是几?(2个)2添上1是几?3添上1是几?4添上1是几?

  找一位同学到前面的计数器上依次从1拨到5,再从5拨到1,好吗?(学生拨珠,边拨边说)

  如果任意给你一张数字卡片,你能用计数器上的珠子表示吗?(教师出示数字卡片3、4、2、5、1,学生一起操作) 如果任意拨计数器上的珠子,你能用卡片上的数字表示吗?

  3、 写一写

  刚才我们认识了1—5,你们愿意写一写吗?自己先来试一试,把这些数写在自己的书上(描红),从1写到5,一个数写一个,看谁写得最好。写完后,小组内相互评价,最后老师评价。

  教师示范书写1—5,重点指导写5,第2笔,在斜竖靠上的地方写横,注意要平。学生练习书写。

  (三)开放性活动

  1.联系生活,丰富联想。

  谈话:在日常生活中有哪些事物能用1~5表示? 请学生列举生活中的事例。

  (1)小组交流。

  (2)汇报。

  2.猜数游戏。

  提问:这个数比2大,可能是几?这个数比4小,可能是几?这个数比3大而且比5小,可能是几?只有这一种可能吗?

  3.用你们桌子上的圆片、小棒、卡片等摆出你喜欢的图形,并跟你的同伴说说分别用了几个学具。(小组活动。)

  五、小结

  这节课你学会了什么?我们认识了1、2、3、4、5,并且会写它们了,同学们今天表现的非常出色,希望做作业时更加认真,看谁写的最好!

数学六年级教案6

  一、分数与除法

  在自然数集合里,加法和乘法运算总是可以实施,但减法和除法却不行;引入分数,自然数集合扩充为非负有理数集合后,除法运算才变得畅通无阻。

  例如,3÷4=?在自然数集合里找不到一个与3÷4对应的自然数,而在非负有理数集合里却找到了一个且只有一个分数,与3÷4对应,即3÷4=。

  如何理解3÷4=的数学意义呢?

  ⑴表示3是4的。其中3与4表示不同的两个量,而是量数,是以4为基准量去度量3所得的结果。

  一般地,a、b都是非零的自然数时,a÷b=。

  ⑵表示3平均分成4份,每份是;或者的4倍是3。这里,3和都表示量,而4是量数。

  事实上,任意两个正有理数相除,都具有上述两种数学意义。

  例如“3÷=?”也有下面两种数学意义:

  ⑴3是的几分之几?

  从上图,可以看出:3÷=。

  ⑵3平均分成份,每份是多少?

  因为是5个的,所以先把3平均分成5小份,每一小份即是所求一份的,如下图所示。

  从上图,也可以看出:3÷=。

  注意:a、b都不是0,但只要有一个是分数,那么a÷b≠。

  所以,如果忽视必要的前提,笼统地说被除数即分子、除数即分母,是不正确的。当且仅当a、b都是不为零的自然数时,等式a÷b=才成立。这个命题还告诉我们,分数可以转化为除法,这为分数化为小数打通了一条重要途径。

  二、百分数

  百分数是否就是分母是100的分数?如果是,又何必需要这个新概念呢?

  事实上,百分数是在分数应用的实践中产生和发展起来的。我们先来解决下面的实际问题:

  在一场足球比赛中,猛虎队获得一次罚点球的机会,他们准备派下列三名队员中的一名去罚点球。下面是这三名队员在过去比赛中罚点球的成绩统计表。

  队员

  踢点球的次数

  罚中的次数

  3号队员

  18

  20

  5号队员

  21

  25

  7号队员

  13

  12

  从这个实际问题抽象成的数学问题是:比较分数、、的大校

  解法1:(化为同分母的分数进行比较)

  =,

  =,

  =。

  因为>>,

  所以>>。

  由此可知,7号队员以往罚点球的成绩最佳,派他去罚点球是明智的选择。

  不过,上面三个分数分母的最小倍数(1300)是比较大的,因此通分不仅比较费劲,也容易出差错。

  解法2:(化为小数进行比较)

  =18÷20=0.90,

  =21÷25=0.84,

  =12÷13>0.923。

  因为0.923>0.90>0.84,所以>>。

  化为小数,虽然可以借以比较分数的大小,但小数却失去了原来分数的特性,即表示量的倍比关系的意义。因此,需要寻找既能保持分数的特性,计算又比较简便的解题方法。就在这种需要的驱动下,百分数应运而生了。

  新的办法就是把分母统统变成100。

  把与化为分母是100的分数不难:=,=。

  问题在于怎样把也变成分母是100的分数呢?

  设所化成的分数的分子为x,即

  =,

  两边同乘100,得

  x=×100,

  x≈92.3。

  所以,≈。这个结果与前面学过的分数不同的地方是,它的分子是一个小数。

  的意义是:如果把13平均分成100份,那么12大约占其中的92.3份。也就是说,这种分数只能表示两个量的倍比关系,而不具有表示量的功能。

  于是,人们把形如,......等,只能表示量的倍比关系,不能表示量的分数,统称为百分数;并引入新的符号“%”(叫做百分号),把百分数记为84%,90%,92.3%,......,以便从形式上与前面学过的分数加以区别。

  显然,84%<90%<92.3%,通过百分数的大小比较,也说明是7号队员点球的罚中率最高。

  诚然,把分数化为百分数还有更简捷的.途径,即通过小数转化。

  如,≈0.923=92.3%。但是这种方法,对于理解百分数的意义,不如方程的方法直观。

  三、比

  比,顾名思义,与人类比较事物的实践活动密切相关。比的概念是在比较不同的量的倍比关系的实践中产生和发展的。

  下面先探讨一个现实问题--平面图画得像不像。

  例1羽毛球场是长18m、宽9m的长方形,如下图A。

  ⑴在B、C、D、E、F等图形中,你认为哪几个长方形的形状像图A,哪几个不像?

  ⑵对形状与图A(羽毛球场)相同的长方形,请你比较它们的长和宽,能发现其中的规律吗?

  ⑶在图A内,请你画一个形状与图A相同的长方形,且这个长方形的长是图A的长的。

  任何正方形的形状都一样,但长方形的形状却有差异。图A恰好可以分成两个大小相同的正方形。发现图A的这个特性,能帮助我们找出其他形状与图A相同的长方形,如图D和E。而图B、C和F都不具有图A的这种特性,所以它们的形状与图A不同。

  图A可以分成两个大小相同的正方形,等价于它的长是宽的2倍。形状与图A相同的长方形,长都是宽的2倍;形状与图A不同的长方形,长都不是宽的2倍。这就是我们发现的规律。

  一般地,a、b分别表示一个长方形的长和宽,分数表示这个长方形的长与宽的倍比关系。这个分数的重要性在于它提供了长方形的一个分类标准:凡是长是宽的倍的长方形,都是形状相同的长方形,它们归为一类。图形的分类对于认识图形的性质具有重要的意义。

  不过用“长是宽的倍”来刻画长方形的形状特征,有时很麻烦。例如,当a或b是分数时,是一个繁分数。为了避免进行繁分数的繁难运算,就需要改进对“长是宽的倍”这一特征的描述,从而引入比的概念。

  “长是宽的倍”,可以用“长与宽的比是a︰b”取而代之。

  当a、b表示两个不同的量时,a︰b==a÷b。

  所以,比可以定义为:两个量相除,叫做这两个量的比。

  虽然比、分数、除法在揭示量的倍比关系方面是相通的,但对于不同的问题情境,仍然需要选择恰当的简便的表征方式,并掌握它们的相互转换。

  例2蜂蜜绿茶是用2份蜂蜜和7份绿茶配制成的消暑饮料,要配制450毫升这种饮料,需要蜂蜜和绿茶各多少毫升?

  在这个问题中,蜂蜜和绿茶体积的倍比关系用比的形式表示比较简便,即蜂蜜︰绿茶=2︰7。

  解法1:(应用方程)

  设:一份蜂蜜或绿茶的体积为x毫升,则配制蜂蜜绿需用蜂蜜2x毫升,绿茶7x毫升。

  2x+7x=450,

  9x=450

  x=50。

  2x=2×50=100,

  7x=7×50=350。

  答:配制蜂蜜绿茶需要100毫升蜂蜜和350毫升绿茶。

  解法2:(综合应用比和分数)蜂蜜︰绿茶=2︰7=︰,且

  +=1。因此,蜂蜜绿茶两个组成部分的倍比关系就转换成各部分与整体(蜂蜜绿茶)的倍比关系。从而,为应用分数解决问题创造了条件,图示如下:

  450×=100,

  450×=350。

  解法1是代数方法,解法2是算术方法,殊途同归。

  例37个女生平分4个蛋糕,3个男生平分2个蛋糕。是每个女生分得多一些,还是每个男生分得多一些?

  解法1:每个女生分得个蛋糕,每个男生分得个蛋糕。问题可以归结为比较分数与的大小。比较两个量的倍比关系又有如下两种方法。

  方法1:(利用除法)

  ÷=×=。

  因为<1,所以男生分得蛋糕比女生多一些。

  方法2:(利用比)

  ︰=12︰14。

  因为12︰14<1,所以男生分得蛋糕比女生多一些。

  解法2:(利用比)分别考虑男、女生的蛋糕数量或人数的倍比关系。

  女生蛋糕︰男生蛋糕=4︰2=2︰1,

  女生人数︰男生蛋糕=7︰3。

  因为7︰3>6︰3=2︰1,所以男生分得蛋糕比女生多一些。

  解法3:(利用图解)

  上图说明,如果只有6个女生平分4个蛋糕,那么女生和男生将分得同样多。但女生有7个,7个女生平分4个蛋糕,每个女生分得的蛋糕要比6个女生平分的情形少一些。所以,男生分得的蛋糕比女生多。

  上述解法2与解法3有异曲同工之妙,妙在都自然地渗透了数学的基本思想方法--对应。

  比的概念不仅进一步揭示了分数的本质--量的倍比关系,而且也丰富了表征思维过程的方法和手段,使我们面临解决与分数相关的实际问题的时候,有更多的思路和方法可以选择,可以灵活转换,左右逢源。

数学六年级教案7

  教学内容:

  第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:

  每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  组织学生实验分组合作学习

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  3、巩固练习:完成练习四第4题。

  三、教学

  (1)出示例3

  已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  四、巩固练习

  1、做练习四的第7题。

  学生先独立判断这三句话是否正确,然后全般核对评讲。

  2、做练习四的第8题。

  (1)引导学生学生思考回答以下问题

  ①这道题已知什么?求什么?

  ②求圆锥的体积必须知道什么?

  ③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习四的第6题。

  (1)指名学生先后回答下面问题

  ①圆柱的侧面积等于多少?

  ②圆柱的表面积的含义是什么?怎样计算?

  ③圆柱体积的计算公式是什么?

  ④圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  五、课堂练习

  1、填空

  (1)圆锥体体积的'计算公式( )

  (2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的()。

  (3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是()。

  (4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高()。

  (5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。

  (6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。

  2、判断

  (1)圆柱体的体积一定比圆锥体的体积大.

  (2)圆锥的体积等于和它等底等高的圆柱体的1/3.

  (3)圆锥体、正方体、长方体的体积都等于底面积×高。

  (4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。

  3、补充习题

  (1)一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?

  (2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?

  (3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?

  (4)在一个底面半径是10cm的圆柱形水桶中装有水,把一个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少?

  (5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?

  六、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  教学反思:

  从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。

数学六年级教案8

  一、教学目标

  (一)知识与技能

  根据生活实际,通过观察、操作、自学教材等活动认识圆,掌握圆的特征,了解圆的各部分名称并能用字母表示对应的名称。

  (二)过程与方法

  了解可以应用不同的工具画圆,掌握用圆规画圆的方法,会用圆规正确地画圆。运用画、折、量等多种手段,理解同圆或等圆中半径和直径的特征和关系。

  (三)情感态度和价值观

  通过对圆的了解,进一步体会数学和日常生活的密切联系,提高数学学习的兴趣。

  二、教学重难点

  教学重点:圆的各部分名称和特征,用圆规正确地画圆。

  教学难点:归纳并理解半径和直径的关系。

  三、教学准备

  多媒体课件、学具(圆规、尺子、剪刀、绳、钉子、各种物体表面有圆形的实物等)。

  四、教学过程

  (一)情境创设,揭示课题

  1.谈话引入。

  教师:我们学过的平面图形有哪些?

  (1)学生回忆交流:有长方形、正方形、三角形、平行四边形、圆……

  (2)今天我们要更深入地来认识“圆”。(板书课题:圆的认识。)

  2.列举生活实例。

  教师:在生活中,圆形的物体随处可见。

  (1)展示教材图片:从奇妙的自然界到文明的人类社会,从手工艺品到各种建筑……到处都可以看到大大小小的圆。

  (2)教师:你能说说自己所见过的圆吗?(学生列举回答。)

  【设计意图】通过简短的“平面图形有哪些”的谈话直接引出课题,简洁明了,同时无形中也巩固了“圆是平面图形”这一知识点;学生对圆已有一定的认识,因此通过主题图欣赏生活中的圆,让学生找找自己生活中见过的圆,使学生对圆有了初步的了解,激发了进一步学习圆的兴趣。

  (二)利用素材,尝试画圆

  1.尝试运用不同的工具画圆。

  教师:如果请你在纸上画出一个圆,你会怎样画?

  预设:

  (1)利用圆形的实物模型的外框画圆;

  (2)用线绕钉子旋转画圆;

  (3)用三角尺;

  (4)用圆规……

  2.运用圆规画圆。

  (1)认识圆规。

  课件出示圆规图片,帮助学生认识圆规。

  圆规的组成:一只“带有针尖的脚”,一只“装有铅笔的脚”。

  (2)用圆规画圆。

  学生自己尝试画圆,边尝试边小结方法:定好两脚间的.距离——把带有针尖的脚固定在一点上——把装有铅笔的脚旋转一周,就画出一个圆。

  教师:说说用圆规画圆要注意什么?

  预设:

  ①固定住针尖;

  ②两只脚之间的距离不随意改变。

  【设计意图】学习画圆的过程让学生充分经历了自主尝试的过程,从最初的利用实物外框、三角尺等工具画圆,让学生经历了从实物抽象出平面图形的过程;运用圆规画圆,重点说说画圆时的注意事项,更是培养了学生自主解决问题的数学素养。

数学六年级教案9

  一、创设情境,再现知识

  谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

  学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

  这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

  【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

  二、梳理归网,学习内化

  1.回顾知识,自主梳理

  ①自己回顾每个概念的意义,同位交流。

  ②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

  【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

  2.交流展示,引导建构

  ①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

  ②哪些是方程?哪些是等式?

  6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13

  ③你会解这些方程吗?解方程的根据是什么?(等式性质)

  选择几个解一解。(展台展示交流)

  如何判断方程解的是否正确?在解方程时要注意一些什么?

  ④复习简易方程的解法、步骤及检验方法、书写格式。

  【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。

  3.提炼方法,认知内化

  (1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

  (2)出示第101页第4题及改编题

  20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?

  ①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?

  ②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?

  引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的思考过程变得简单)

  【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的'方法解答。

  三、综合应用,整体提高

  1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

  ①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

  ②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

  2.我是“精选细算“小英才

  课本101页5—8题(学生独立做,集体订正)

  3.智力冲浪

  课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

  【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

  四、总结提升,知情共融。

  这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

数学六年级教案10

  教学内容:教科书第50页例3,练习十一3~6题。

  教学目标

  1.使学生理解解比例的意义。

  2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。

  3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。

  教学重点:使学生掌握解比例的方法,学会解比例。

  教学难点:建立解比例和解方程之间的联系。

  教学准备:课件。

  教学过程

  一、复习准备

  (1)什么叫比例?什么叫做比例的基本性质?

  (2)下面哪一组中的两个比可以组成比例?用比例的基本性质判断。

  18∶20和7.2∶8,100∶0.2和10∶0.002

  学生独立完成后,抽取个别学生的答案在视频展示台上展示。

  二、导入新课

  教师:谁能很快说出下面比例中缺少的项各是几?(学生试说)

  14∶21=2∶() ,1.25∶()=2.5∶4

  教师:在一个比例式中,共有四项,如果已知其中的任何三项,要能很快求出这个比例中的另外一个未知项,就要用我们今天学的知识——解比例。

  板书课题:解比例。

  三、探究新知

  1、教学例3

  教师:像这样知道比例中的任意三项,求另外一个未知项叫做解比例。同学们能用以前学过的知识求出34∶12=x∶49中x的值吗?

  引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。例如,把比看做除法,那么34∶12=x∶49就可以转化成34÷12=x÷49,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把34∶12=x∶49转化成12x=34×49来解。

  教师:同学们真聪明,想出了这么多解决问题的方法。下面请一个同学回答,你把34∶12=x∶49转化成12x=34×49来解,根据是什么?(根据比例的基本性质。)

  2、巩固练习

  教师:你能根据比例的基本性质,把下面的比例改写成含有未知数的乘法等式来解吗?在黑板上出示:

  3∶4=x∶21 4∶13=9∶x x∶8=12∶32

  学生解答,抽取几个学生的作业在视频展示台上展示,并集体订正。

  3、教学"试一试"

  出示9/6=x/4

  教师:这个比例和前面几个比例有什么不同?(这个比例是分数形式。)

  指出它的内项和外项。像这样的分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?

  学生讨论并解答,完成后,请学生说一说是怎样求出x的值。

  教师:解分数形式的比例时要注意什么?

  引导学生说出要注意用交叉法找出比例中的两个内项和两个外项。

  教师指导学生进行验算,注意书写格式的规范性。

  四、巩固练习

  (1)学生独立完成练习十一的第3题和第5题。

  (2)讨论完成练习十一的.第4题。

  教师先引导学生做:这道题需要逆用比例的基本性质。在比例里,两个内项的积等于两个外项的积。这道题是知道两个积相等,如果我们把左边的两个数当作比例的内项,那么右边两个数就应当作为比例的外项,这样就可以写出比例式了。如果我们把左边的两个数当作比例的外项,那么右边两个数就应当作为比例的内项,也可以写出比例式。

  学生自己写出比例式,课件显示:

  如果把6,1.2作为外项,有下面这些比例式:

  6∶x=3.6∶1.2 ,6∶3.6=x∶1.2

  1.2∶x=3.6∶6 ,1.2∶3.6=x∶6

  如果把6,1.2作为内项,有下面这些比例式:

  x∶6=1.2∶3,6 x∶1.2=6∶3.6

  3.6∶6=1.2∶x ,3.6∶1.2=6∶x

  教师:写比例时,我们要按照一定的顺序来写才能写出所有的比例式,即不重复又不遗漏。

  (3)学生独立完成练习十一的第6题,然后教师讲评。

  五、全课总结

  (1)什么叫解比例?

  (2)用比例的基本性质解比例的一般方法。

  ①根据比例的基本性质把比例改写成方程。

  ②根据以前学过的解方程的方法求解。

  (3)这节课你运用了哪些学习的方法?还有哪些问题?

数学六年级教案11

  教学内容:第119页的应用广角,第27~31题,及自我评价

  教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。

  2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的.乐趣,感受数学的意义和价值,增强学好数学的信心。

  教学过程:

  一、应用广角

  1、问:你在生活中发现过哪些数学问题吗?

  你能运用所学的数学知识和方法解决这些问题吗?

  2、完成第27题

  (1)课前预先布置学生按要求去调查

  (2)课上,让学生分组汇报调查得到的数据

  学生根据数据计算,完成填空

  (3)分析:从这些信息中,你们知道了什么?

  用百分数或比表示相关的信息有什么好处?

  3、完成第28题

  收集一些用百分数或比表示的信息,在小组里交流

  4、完成第29题

  根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。

  全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。

  5、完成第30题

  (1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板

  读题,思考:剪去的每个正方形的边长应该是几厘米?

  (2)学生动手剪一剪、折一折

  找一找:这个纸盒的长、宽、高各是多少?

  (3)算一算:

  制作这个纸盒用了多少硬纸板?

  这个纸盒的容积是多少立方厘米?

  6、完成第31题

  学生先独立思考,再全班交流

  二、自我评价

  1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。

  2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。

  3、在学习中,你觉得自己又有了哪些收获和进步?还有什么地方也有所欠缺,需要改进和努力的?

数学六年级教案12

  教学内容:

  苏教版六下P79“练习与实践”第6~9题。

  教学目标:

  学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。

  学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。

  学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。

  教学重点:

  用画图、列表、转化等策略解决实际问题。

  教学难点:

  灵活选择策略解决实际问题。

  教学过程:

  一、揭示课题

  谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。

  二、练习与实践

  做“练习与实践”第6题。

  (1)让学生读题,利用图形理解条件和问题。

  交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件)这块长方形菜地分成的两个部分各是什么形状的?

  引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?

  为什么想到在三角形的'顶点画宽的平行线段?

  说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。

  (2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。

  交流:哪些同学想到了解决这个问题的思路?和大家交流一下。

  结合交流,帮助学生理解不同思路。

  (3)让学生选择一种思路解答,指名不同解法的学生板演。

  引导学生结合图形分别说说不同解法中每一步算的什么。

  (4)提问:我们刚才画图对于解答问题有什么好处?

  下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。

  出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。

  提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。

  交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?

  说明:用画图的策略能找到相应的条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。

  做“练习与实践”第7题。

  提问:你能说说题里告诉我们什么,要解决什么问题?

  引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。

  交流:你是怎样列表的?画图的是怎样画图表示的?

  引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?

  你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?

  做“练习与实践”第8题。

  (1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。

  学生画图、交流并解答,教师巡视,指名不同算法的学生板演。

  (2)交流:线段图是怎样补充完整的?

  你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?

  指名交流,引导学生结合图形理解不同解法。

  比较:哪种解法更方便一些?这里应用了哪个策略?

  做“练习与实践”第9题。

  学生读题,要求交流条件和问题。

  提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?引导:根据从第一筐取出2放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线9

  段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。

  交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。

  引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。

  交流:你是怎样解答的?用了什么策略?

  结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?

  三、总结交流提问

  回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?

数学六年级教案13

  第一单元长方体和正方体

  一、教学目标:

  1、使学生通过观察、操作等活动认识长方体、正方体及其展开图,知道长方体和正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的基本特征。

  2、使学生通过动手实验和对具体实例的观察,了解体积(容积)的意义及其常用的计量单位,初步具有1立方米、1立方分米、1立方厘米实际大小的观念,会进行相邻体积单位的换算。

  3、使学生在具体情境中,经历操作、猜想、验证、讨论、归纳等数学活动过程,探索并掌握长方体和正方体的表面积以及体积的计算方法,能解决与表面积和体积计算相关的一些简单实际问题。

  4、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  5、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  二、教学重点:

  通过观察、操作等活动认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的基本特征以及表面积、体积的计算方法,能解决与表面积和体积计算相关的一些简单实际问题。

  三、教学难点:

  在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。初步具有1立方米、1立方分米、1立方厘米实际大小的观念,探索并掌握长方体和正方体的表面积以及体积的计算方法。

  四、课时安排:

  14课时

  第1课时:长方体和正方体和正方体的认识(1)

  教学内容:P1、2例1、例2和“练一练”,练习一第1-4题。

  教学目标:

  1.通过看一看、量一量、比一比来了解长方体和正方体的点、线、面的特

  征,认识长方体的长、宽、高及正方体的棱,理解长方体和正方体的关系。

  2.培养学生观察、动手的能力及归纳的能力。

  教学重点:认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。

  教学难点:长方体和正方体的特征。

  课前准备:长方体和正方体的教具和学具。

  课时安排:1课时

  教学过程

  一、认识长方体的特征

  1.教学例1

  (1)我们生活中,哪些物体的形状是长方体?

  学生交流。

  (2)教师出示长方体教具

  长方体有几个面?分别是哪几个面?

  每个人在自己的座位上最多能看到几个面?

  学生交流自己所看到的结果。

  教师指出:因为我们最多只能看见它的三个面,所以在画长方体的时候一般画三个面。

  教师指导学生画长方体的立体图,并介绍它的棱与顶点,学生和教师一起操作。

  长方体有几条棱和几个顶点?它的面和棱各有什么特征?

  每个学生通过看一看、量一量、比一比去认识一下,并在小组里交流,然后全班交流。

  教师根据学生的交流情况及时板书。

  顶点:8个

  棱:12条,分三组,每组的长度相等。

  面:6个,相对面的形状完全一样。

  学生对照自己的教具再说说长方体的点、线、面的特征。

  教师进一步介绍学生认识长、宽、高并板在图中板书。

  2.完成相应的练一练

  3.完成练习三的第1题

  学生直接在小组里交流。

  二、认识正方体的特征

  1.教学例2

  (1)出示正方体的教具,问:正方体有几个面、几条棱和几个顶点它们的面和棱各有什么特征?

  让学生模仿例1的学习方法,看一看、量一量、比一比,去研究一下正方体的特征。

  (2)交流学习的结果,教师根据学生的汇报板书。

  (3)比较长、正方体的特征的异同

  学生根据板书,结合立体图形,小组讨论交流。

  汇报讨论的结果,教师用集合图表示它们的关系。

  2.完成相应的练一练。

  三、巩固练习

  1.完成练习一的第2题

  指名学生口答,集体评讲。

  2.完成练习一的第3题

  (1)学生观察后判断哪个是长方体?哪个是正方体?

  (2)学生直接口答。

  (3)重点说说其余的几个面是否完全相同?

  3.完成练习一的第4题

  让学生先分别指出它们的长、宽、高各是哪条线段,然后说

  说各是多少?

  四、课堂总结

  五、布置作业

  完成练习一的第4题。

  教学反思

  第2课时:长方体和正方体的认识(2)

  教学内容:P3例3、“试一试”和“练一练”,练习一第5-9题。

  教学目标:

  1.通过动手操作进一步认识长方体和正方体的特征,会根据所给的长方形

  的特征判断它们能否组成长方体或正方体。

  2.培养学生动手操作能力和立体观念。

  教学重点:认识长方体的侧面展开图。

  教学难点:认识长方体的侧面展开图。

  课前准备:剪刀。

  课时安排:1课时

  教学过程

  一、复习引入

  谈话:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  指名说说,全班交流补充。

  二、探究新知

  (1)除了同学们说的这些,长方体和正方体还有什么特征呢,这节课我们就继续来进行学习。

  出示正方体纸盒:

  你能够沿着这个正方体的棱把这个正方体纸盒剪开吗?

  要求:剪的时候要沿着棱剪,并且各个面要互相联在一起。

  学生尝试操作。

  小组里交流。

  (2)这个长方体纸盒你也能够沿着棱把它剪开吗?

  学生独立操作。

  看看长方体的展开图,你有什么发现?引导学生观察交流。

  追问:你能从展开图中找到3组相对的面吗?

  (3)完成练一练第1题

  标注完后引导学生具体说说思考的过程。

  (4)完成练一练第2题

  先引导学生通过想象进行判断,在此基础上再动手操作进行验证。

  三、巩固练习

  1.完成练习一第6题

  学生小组交流,独立操作验证。

  2.完成练习一第7题

  学生独立完成,全班交流,指名说说自己的思考过程。

  3.学有余力时可完成思考题

  启发学生思考:要围成一个长方体或正方体需要几张硬纸片,这几张硬纸片的形状、大小有什么联系?

  让学生通过操作逐步掌握其中的规律。

  四、全课总结

  通过这节课的学习你有哪些收获?你认为今天学习的内容什么是重点?

  五、作业

  1.练习一第5、8、9题。

  2.自己动手制作一个长方体纸盒。

  教学反思

  第3课时:长方体和正方体的表面积(1)

  教学内容:P6例4、“试一试”和“练一练”,练习二第1-4题。

  教学目标:

  1.理解表面积的含义,能正确计算6个面完整的长方体和正方体的表面积。

  2.培养学生用不同方法解决问题的能力。

  教学重点:理解并掌握长方体和正方体的表面积的计算方法。

  教学难点:能运用长方体和正方体的表面积的计算方法解决一些简单的'实际问题。

  课前准备:长方体教具

  课时安排:1课时

  教学过程

  一、复习准备

  谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。

  出示长方体和正方体纸盒。

  提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?

  二、探究新知

  1.探究长方体表面积的计算方法。

  (1)出示例6:如果告诉你这个长方体纸盒的长宽高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  在交流中明确:只要算出这个长方体六个面的面积之和就可以了。

  (2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这六个面的面积之和?

  (3)学生独立列式,指名汇报,师根据学生回答进行板书。

  (4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)

  (5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。

  2.探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少需要多少硬纸板的问题,如果纸盒是正方形的你还会解决同样的问题吗?

  (2)学生独立尝试解答。

  (3)组织交流反馈,提醒学生根据正方体的特征进行思考。

  3.揭示表面积的含义

  我们刚才在求长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。

  三、应用拓展

  1.做“练一练”

  先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。

  2.做练习二第1题

  让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。

  3.做练习二第2题

  让学生独立依次完成两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题。

  四、全课小结

  通过今天的学习你有什么收获?什么是长方体或正方体的表面积?可以怎样计算长方体或正方体的表面积?长方体表面积的计算方法与正方体的表面积的计算方法有什么联系?

  五、作业

  练习二第3、4题。

  教学反思

  第4课时:长方体和正方体表面积(2)

  教学内容:P7例5和“练一练”,练习二第5-10题。

  教学目标:

  1.通过探索,学会运用长方体、正方体表面积的计算方法解决求物体的4

  个或5个面的面积之和的实际问题。

  2.让学生在解决问题的过程中发展空间观念,培养思维的灵活性,增强解决问题的实际能力。

  教学重点:根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

  教学难点:根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

  课前准备:长方体教具

  课时安排:1课时

  教学过程

  一、复习准备

  上节课我们学习了长方体和正方体的表面积,谁能说说什么是长方体(或正方体)的表面积?

  指名回答。

  提问:长方体的表面积怎样求?正方体呢?

  二、探究新知

  1.出示例5:

  指名读题。

  启发思考:要求制作这个鱼缸至少需要多少平方分米玻璃,实际上就是求什么?可以怎样计算呢?

  在小组里交流自己的想法,并选择一种想法算出结果。

  集体交流订正。

  2.出示练一练

  读题后启发学生思考:

  这两个纸盒各用多少平方厘米纸板是那几个面的面积之和?

  学生独立完成,集体订正。

  三、巩固练习

  1.练习二第5题

  直接在书上填写。完成后集体核对。

  2.完成练习二第6题

  学生自己读题。

  启发思考:解答这个问题是求那几个面的面积之和?

  根据给出的条件,这几个面的长和宽分别是多少?

  学生先在小组里交流,然后独立解答。

  3.完成练习二第8题

  先画出昆虫箱的示意图。

  引导学生思考讨论:需要木板和纱网各多少平方厘米分别求的是几个面的面积?哪几个面?

  4.完成练习二第9题

  引导学生观察教室,说说如果要给教室进行粉刷,需要刷哪些面的面积?再结合题目进行解答。

  学生列式,集体订正。

  四、全课总结

  同学们,通过这节课的学习,你学会了哪些知识?你觉得在解决问题的过程中我们要注意些什么?

  五、作业

  练习二第5、7题

  思考题先独立思考然后同桌交流。

  教学反思

  第5课时:体积和体积单位(1)

  教学内容:P10-11例6、例7,“试一试”和“练一练”,练习三第1-4题。

  教学目标:

  1.让学生经历观察、操作、猜测、验证等活动过程,体会物体是占有空间

  的,而且占有的空间是有大小的,理解体积和容积的意义,能直观比较物体体积或容器容积的大小。

  2.让学生在学习活动中进一步发展观察、操作和想象能力,增强空间观念。

  教学重点:通过操作活动,初步认识体积和容积的意义。

  教学难点:通过操作活动,初步认识体积和容积的意义。

  课前准备:直尺,木条。

  课时安排:1课时

  教学过程

  一、教学例6

  1.通过实验,让学生体会到物体是占有空间的。

  教师按书中过程操作。问:为什么会剩一些水?引导学生认识到桃子占有一定的空间。

  如果改用其它的物体呢?再实验。

  小结:通过刚才的实验,我们发现物体是占有空间的。

  2.通过实验使学生体会到物体所占的空间是有大小的。

  出示两个完全一样的玻璃杯,边操作边讲述:一个里边放荔枝,一个里边放桃。想一想:哪个里面放的水会多些?

  学生自由发表意见。

  想一想,两个杯里都装了物体,为什么倒进去的水有多有少呢?

  学生交流。

  小结:物体不仅占有空间,而且占有的空间是有大有小的。

  3.揭示体积的含义

  出示3个大小不同的水果,问:哪个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?

  学生独立思考后让同组的同学交流。

  通过刚才的三次活动,你有什么感受?

  教师在学生交流的基础上揭示体积的含义,并让学生举例。

  二、教学例7

  1.出示两个大小不同的书盒子,拿出书盒里的书,问:你能看出哪个盒子里的书的体积大一些吗?

  教师讲述容积的含义,并问:这两个盒子,哪个的容积大,为什么?

  2.完成“试一试”。

  同桌交流,指名回答。

  三、巩固提高

  1.完成“练一练”第1、2题.

  先做第1题:直接判断,并让学生从体积、容积的含义上说明原因。再做第2题,让学生从容积的含义上进行解释。

  2.完成练习三第1-4题

  四、全课小结:让学生自己说一说这节课所学到的知识。

  教学反思

  第6课时:体积和体积单位(2)

  教学内容:P12-13例8和“练一练”,练习三第5-10题。

  教学目标:

  1.让学生认识常用的体积单位,初步建立1立方厘米、1立方分米的实际大

  小的表象,能正确区分长度单位、面积单位和体积单位。

  2.让学生在具体的问题情境中,经历观察、思考、探究等学习活动过程,增强空间观念,发展数学思考。

  教学重点:认识体积单位。

  教学难点:初步具有1立方米、1立方分米、1立方厘米的实际大小的观念。

  课前准备:棱长1厘米和1分米的正方体各一个。1立方米演示模型架,棱长1分米和1厘米的正方体容器各一个,1升和5毫升的量杯各一个,学生每人准备6个棱长1厘米的正方体。

  课时安排:1课时

  教学过程

  一、复习引入

  谈话:上节课我们认识了体积和容积,谁能说一说什么是体积,什么是容积?

  指名说说,全班交流。

  二、探究新知

  (1)出示如例8的长方体和正方体纸盒:

  你能说说什么是它们的体积吗?

  指名回答。

  观察这两个图形,你知道他们哪个的体积大吗?

  学生猜测。

  当学生有争议时,引导:

  想一想,我们学习平面图形时,是怎样比较的?你有什么好的方法吗?

  突出:可以想把它们分割成同样大小的正方体,再进行比较。

  小结:为了准确测量或计量体积的大小,要用同样大的正方体作为体积单位。

  (2)认识常用的体积单位.

  我们已经知道了常用的长度单位、常用的面积单位.你能根据这些推想出有哪些常用的体积单位吗?

  根据学生发言,逐次板书:常用体积单位──立方厘米、立方分米、立方米.随板书出示相应的模型.(1立方厘米、1立方分米、立方米)

  认识立方厘米、立方分米.

  请同学们取出自己带的1立方厘米、1立方分米的模型,观察它们的形状、大小,量一量它们的棱长各是多少。

  板书:棱长1厘米的正方体,体积是1立方厘米.

  棱长1分米的正方体,体积是1立方分米

  让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米。

  认识立方米.

  先让学生根据立方厘米、立方分米的概念,猜想一个怎样的正方体体积是1立方米,想象1立方米有多大.

  教师用棱长1米的架子演示1立方米的大小,感受1立方米的空间有多大。

  (3)说明:升和毫升也是体积单位。不过它是用来计量液体的体积的。

  直观演示:1立方分米就等于1升。

  由此得出;1立方厘米等于1毫升。

  三、巩固练习

  1.完成练一练

  同桌互相说一说,集体交流。

  2.完成练习三第6题

  指名说说三个图形分别表示什么单位,它们之间有什么关系。

  3.完成练习三第7题

  学生自己数一数,集体交流。

  4.成练习三第8、9题

  学生独立完成,集体订正。

  5.完成练习三第10题。

  学生观察,根据不同方向看到的图形,判断这些木块摆放的情况,瑞得出体积是多少。

  四、全课小结

  这节课我们都学习了哪些知识?你有什么收获?

  五、作业

  练习三第5题和思考题

  教学反思

  第7课时:长方体和正方体的体积(1)

  教学内容:P16-17例9、例10,“试一试”和“练一练”,练习四第1-3题。

  教学目标:

  1.在数学活动中探索并掌握长方体和正方体的体积公式,能运用公式正确

  计算它们的体积,并解决相应的简单实际问题。

  2.让学生在数学活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  教学重点:探索并掌握长方体和正方体的体积公式。

  教学难点:长方体和正方体的体积公式。

  课前准备:学生每人准备30个左右的1立方厘米的小正方体。

  课时安排:1课时

  教学过程

  一、创设问题情境,导入新课

  出示可分割的长方体模型,问:你能告诉大家它的体积是多少?

  说说是怎样想的。

  教师分割演示后设疑,并揭示课题。

  二、操作探究,发现规律

  1.出示例9,要求学生四人一组,用准备好的正方体搭出四个不同的长方体,并编号。

  2.让学生观察并交流。

  (1)这些长方体的长宽高各是多少?

  (2)用了几个小正方体,怎样很快知道所用的小正方体的个数?

  (3)长方体的体积是多少?

  3.在小组里根据拼搭的长方体的数据填表。

  长/厘米

  宽/厘米

  高/厘米

  正方体的个数

  体积/立方厘米

  长方体1

  长方体2

  长方体3

  长方体4

  根据表格,引导分析,发现规律。

  拼搭出的长方体的体积跟小正方体的个数有什么关系?

  4.引导学生猜想:长方体的体积与它的长、宽、高有什么关系?

  三、再次探索,验证猜想。

  1.出示例10,让学生摆出例10中的三个长方体,并提问:各需要多少个小正方体?

  2.让学生动手操作,先想一想,再数一数,看看一共用多少个正方体。

  3.课件演示。

  4.如果让你摆一个长5厘米、宽4厘米、高3厘米的长方体,你能说出要用多少个小正方体吗?

  四、引导概括,得出公式

  1.你发现长方体的体积与它的长、宽、高有什么关系?如何求长方体的体积。

  交流得出长方体的体积计算公式并板书文字公式和字母公式

  2.启发引导

  正方体是长方体的特殊形式,你能根据长方体的体积公式写出正方体的体积公式吗?

  让学生尝试,再交流得出,并阅读26的说明。

  五、应用拓展,巩固练习

  1.做“试一试”

  学生独立计算,交流时先说说公式,再说说是怎样列式的。

  做“练一练”第1题。

  先观察,后独立计算。

  2.做“练一练”第2题

  先让学生选择几个式子说说其表示的意思,再口算。

  3.做练习四第1题

  学生独立解决后由学生逐一评讲。

  六、课堂作业

  练习四第2、3题。

  教学反思

  第8课时:长方体和正方体的体积(2)

  教学内容:P18例11和“练一练”,练习四第4-8题。

  教学目标:

  1.引导学生进一步沟通正方体和长方体体积公式,并在分析比较的基础上,

  得出长方体(或正方体)的体积=底面积×高这一公式,会用次公式计算长方体和正方体的体积,并能用来解决有关的实际问题。

  2.通过学习发展学生的抽象思维能力和空间观念。

  教学重点:应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

  教学难点:应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、复习导入

  1.计算长方体和正方体的体积

  (1)长5米、宽4米、高4米

  (2)棱长5厘米

  2.长方体的体积计算公式是怎样的?它是如何推导出来的?正方体的体积计算公式呢?

  二、探究长方体和正方体通用的体积计算公式

  1.出示例11长方体和正方体图,对照公式,问:这里的长×宽和棱长×棱长分别求的是什么?

  你能指出长方体和正方体的底面吗?怎样求它们的底面积?

  2.小组讨论;如果已知长方体的底面积和高,能求出长方体的体积吗?怎样求?

  根据学生的回答板书。

  如果已知正方体的底面积和高,是否也能求出正方体的体积呢?怎样求?教师板书完整。并用字母公式表示。

  3.完成“练一练”

  第1题,让学生先计算底面积再计算体积。

  第2题,问:这道题的条件是什么?利用哪个公式来计算体积?

  学生各自计算,指名板演,共同评议。

  三、巩固提高

  1.做练习四第5题

  学生分析后独立计算,集体评讲。

  2.做练习四第6题

  学生独立计算,然后全班交流。

  3.做练习四第7题

  读题理解题意,用方程独立解答,交流订正。

  四、课堂小结

  五、布置作业

  练习四第4、8题。

  教学反思

  第9课时:体积单位间的进率(1)

  教学内容:P19例12和“练一练”,练习四第9-14题。

  教学目标:

  1.让学生经历1立方分米=1000立方厘米,1立方米=1000立方分米的推导

  过程,明白相邻的两个体积单位间的进率是1000的道理,会正确运用体积单位间的进率进行名数的变换。

  2.让学生用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌

  握它们相邻两个单位间的进率。

  教学重点:根据进率进行相邻体积单位的换算。

  教学难点:培养学生的合理推理能力,发展学生的空间观念。

  课前准备:棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  课时安排:1课时

  教学过程

  一、复习导入。

  1.提问:

  (1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?

  (2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?

  (3)常用的体积单位有哪些?相邻的两个体积单位间的进率是多少?

  2.问:你能猜出相邻体积单位间的进率是多少吗?

  二、自主探索,验证猜测

  1.教学例12

  (1)挂图出示棱长为1分米的正方体以及棱长为10厘米的正方体

  (2)这两个正方体的体积是否相等?你是怎样想的?

  (3)用图中给出的数据分别计算它们的体积。

  学生分别算一算,然后在班内交流。

  (4)根据它们的体积相等,可以得出怎样的结论?

  (5)谁来说一说:为什么1立方分米=1000立方厘米?

  2.用同样的方法,你能推算出1立方米等于多少立方分米吗?

  学生小组讨论,班内交流

  3.小结:你能说每相邻两个体积单位间的进率是多少?

  4.你能用体积单位间的进率解释为什么1升=1000毫升呢?

  三、巩固深化

  1.出示练一练的习题

  学生独立完成

  班内交流你是怎样想的?

  2.出示练习四第9题

  学生独立完成表格,班内交流。

  出示练习四第10-12题

  学生独立完成,班内交流你是怎样想的?

  3.出示练习四第13题。

  学生读题,思考:两个容器各能盛水多少毫升是求什么?也就是两个长方体的什么?独立完成,说是怎样想的。

  四、课堂总结

  五、课堂作业

  练习四第14题

  教学反思

  第10课时:相邻体积单位间的进率(2)

  教学内容:P21-22练习四第15-19题。

  教学目标:

  1.在学生掌握体积及容积单位的基础上,进一步明白相邻的两个体积(容积)单位间的进率是1000的道理,会正确运用体积单位间的进率进行名数的变换。

  2.提高学生运用已学知识解决实际问题的能力。

  教学重点:能正确应用体积单位间的进率进行名数的变换。

  教学难点:解决一些简单的实际问题。

  课前准备:棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  课时安排:1课时

  教学过程

  一、知识复习

  1.我们已经学过的体积单位有哪些?它们之间有怎样的关系?

  2.我们已经学过的容积单位有哪些?它们之间有怎样的关系?

  3.容积和体积单位之间有怎样的关系?

  二、课堂练习

  1.做练习四的第15题。

  让学生先分别说说长方体和正方体的体积和表面积各是怎样计算的,再让学生分别算出它们的体积和表面积。

  集体评讲。

  2.做练习四的第16、17题。

  求“需要多少平方分米硬纸板”就是求什么?需要哪些条件?

  求“需要铁皮多少平方分米”就是求它的什么?需要哪些条件?

  学生分析后逐题解答。

  3.做练习四的第18题

  求第1个问题就是求它的什么?需要哪些条件?

  求“需要多少泥土”就是求什么?需要哪些条件?

  求“需要多少平方米的木条”就是求它的什么?需要哪些条件?

  学生再分析的基础上逐题解答。

  三、本节课总结

  四、课堂作业

  做练习四的第19题。

  五、指导解答思考题。

  读题后讨论:“表面积比原来增加56平方厘米”是哪部分的面积?这部分面积是怎样得到的?

  学生尝试解答。

  六、阅读“你知道吗”内容。

  教学反思

  第11课时:整理与练习(1)

  教学内容:P23“回顾与整理”,“练习与应用”第1-6题。

  教学目标

  1.进一步认识长方体和正方体的特征,理解体积和容积的意义,熟练进行体积和容积单位间的换算,掌握长方体和正方体体积及表面积的计算方法,能运用公式

  解决实际问题。

  2.提高学生应用已有知识解决实际问题的能力。

  教学重点:对本单元所学内容进行梳理,进一步完善有关长方体和正方体的认知结构。

  教学难点:对本单元所学内容进行梳理,进一步完善有关长方体和正方体的认知结构。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、知识整理

  长方体和正方体各有哪些特征?有什么联系?

  体积和容积的意义分别指什么?常用的体积和容积的单位有哪些?相邻体积单位间的进率是多少?

  怎样计算长方体和正方体的表面积?解决有关表面积的实际问题要注意什么?

  你是怎样发现长方体体积公式的?正方体体积公式和她有什么联系?

  学生逐题分小组讨论,并在全班交流,教师根据学生的回答适时板书。

  二、练习与应用

  1.做练习与应用的第1题

  先判断是什么立体图形,并说说你判断的依据是什么?

  估计哪个立体图形的体积最大,再计算它们的体积。验证自己的判断。

  分别计算它们的表面积。

  2.做练习与应用的第2题

  读题,仔细观察,让学生说说你发现了什么?两次的读数分别是多少?这能说明什么?增加的实际上是什么体积?

  3.做练习与应用的第3题

  让学生先说说名数互化的方法,再观察每题是把什么名数改写成什么名数。

  学生独立完成,集体评讲。

  4.做一个长8厘米,宽5厘米,高4厘米的长方体,至少需要铁丝多少厘米?(接头忽略不计)。如果做一个棱长6厘米的正方体呢?

  学生独立计算,集体评讲。

  5.用一根长48厘米的铁丝做一个正方体的框架,这个正方体的棱长最大是多少?如果改做一个长5厘米,宽4厘米的长方体,高应该是多少?

  学生自己解答,求高时可提示用方程去解答。

  6.小结

  三、课堂练习

  1.0.23立方分米=()立方厘米

  3820立方分米=()立方米

  3200立方厘米=()毫升=()升

  5.14升=()毫升=()立方厘米

  2.用72厘米长的铁丝做一个正方体框架,框架的棱长是多少?所有

  的面贴上纸,要贴多大的面积?所占的空间是多大?

  四、课堂作业

  “练习与应用”第4-6题。

  教学反思

  第12课时:整理与练习(2)

  教学内容:P24-25“练习与应用”第7-10题。

  教学目标:

  1.进一步掌握长方体和正方体体积及表面积的计算方法,能运用公式解决生活中求表面积和体积的实际问题。

  2.提高学生应用已有知识解决实际问题的能力。

  教学重点:使学生更好地掌握本单元所学的知识,学会运用所学知识解决一些简单的实际问题。

  教学难点:培养学生解决问题的能力。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、课堂练习

  师:在我们的生活中有许许多多的长方体和正方体,我们来说说它们的实际应用,解决生活中的哪些问题时要用到这些知识?下面这几道题中哪些知识的应用?

  1.做练习与应用的第7题

  (1)学生读题,讨论:这两个问题分别求的什么?

  (2)学生回答后独立计算。

  集体评讲。

  2.做练习与应用的第8题

  (1)学生读题,获取题中已知信息。

  (2)说说问题实际上是求什么。

  指名学生回答,集体评价。

  3.补充练习

  (1)一个无盖的正方体硬纸盒,棱长4.5厘米,做这个纸盒至少要用多少平方厘米硬纸板?它的容积是多少?

  (2)一个长方体汽油桶,高0.5分米,底面是边长4分米的正方形,做这个汽油桶至少需要多少铁皮?如果每升油2.5元,这桶汽油价值多少元?(桶的厚度忽略不计)

  (3)把一个棱长60厘米的正方体钢材,锻造成横截面面积是16平方厘米的长方体钢材,锻成的长方体钢材长多少米?

  以上各题,学生读题后各自练习,集体评讲。

  4.完成思考题

  先让学生思考:哪个地方的小正方体三面涂色?哪个地方的小正方体二面涂色?哪个地方的小正方体一面涂色?

  然后再根据它们所在的位置去数一数,算一算。

  二、课堂练习小结

  三、课堂作业

  做练习与应用的第9、10题

  教学反思

  第13课时:整理与练习(3)

  教学内容:P25“探索与实践”第11-13题。

  教学目标:

  1.在实际操作中再次感受长方体和正方体顶点和棱的特点。

  2.使学生进一步体会数学学习与实际生活的联系,感受数学知识的价值。

  3.引导学生对自己在探究新知识过程中的表现和应用知识解决实际问题的能力作出实事求是的评价。

  教学重点:数学学习与实际生活的联系。

  教学难点:感受数学知识的价值。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一.练习与应用第11题

  可以先出示一个长方体框架,让学生观察它的特征

  引导学生思考做一个长方体或正方体框架时,应该怎样选料。

  做好后组织相应的展示和交流,让学生介绍自己选料时的思考过程

  二、练习与应用第12题

  出示学生在课前收集的相关数据,进行计算和交流。

  三、评价与反思

  先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,对自己作出客观,合理的评价。

  引导学生对自己在探究新知识的过程中的表现和应用知识解决实际问题的能力作出实事求是的评价。

  四、作业

  练习与应用第13题及思考题。

  教学反思

  第14课时:表面涂色的正方体

  教学内容:P26内容。

  教学目标:

  1.通过活动,积累由特殊到一般寻找数学规律的数学经验。

  2.进一步培养用分类计数的方法解决问题的能力,发展空间想象力。

  教学重点:找出小正方体涂色以及它所在的位置的规律。

  教学难点:一面、两面、三面涂色小正方体个数以及它所在位置的规律。

  课前准备:27个1立方厘米的正方体

  课时安排:1课时

  教学过程

  一、引入新课

  谈话:课前,我们通过魔方认识了三面涂色、两面涂色、一面涂色的相关情况,谁能说说在魔方中三面涂色、两面涂色、一面涂色的部件分别处在魔方的什么位置?能不能通过旋转把魔方中三面涂色的部分移到两面涂色或只有一面涂色的位置?

  看来三面涂色、两面涂色、一面涂色的位置是确定的。今天,我们就来一起探究跟表面涂色有关的正方体的计数问题。

  板书:分类计数。

  课件出示问题:

  把一个表面都涂上颜色的正方体木块,切成64块大小相同的小正方体。

  (1)三面涂色的小正方体有多少块?

  (2)两面涂色的小正方体有多少块?

  (3)一面涂色的小正方体有多少块?

  二、探究正方体中表面涂色的小正方体

  (一)棱长为4的正方体

  提问:三面涂色的小正方体有多少个?处在什么位置上的小正方体才会是三面涂色的?(课件显示)闭上眼睛想一想三面涂色的小正方体在什么位置。

  提问:两面涂色的小正方体有多少个?处在什么位置?(课件显示)

  这个数据可以通过怎样的计算获得?

  提问:一面涂色的小正方体有多少个?处在什么位置?(课件显示)这个数据该通过怎样的计算获得?

  追问:六面都没有涂色的小正方体有多少个?这样的小正方体处在什么位置?它的个数该如何计算?

  引导:将大正方体剥去“表皮”,剩下的是什么样子?

  指出:六面都没有涂色的小正方体在大正方体的中间。

  两种算法:64—8—24—24=8(个),2×2X2=8(个)。

  操作教具,验证学生的发现:

  (1)将处在顶层的4个顶点上的4个小正方体从教具中取下,让学生见证“三面涂色”。

  (2)将处在非底层的8条棱上的16个小正方体取下,让学生明确计算方法、见证“两面涂色”。同时追问:还有的两面涂色的小正方体在哪里?

  (3)取出其中一面涂色的小正厅体,让学生明确计算方法,见证“一面涂色”。(4)呈现“六面都没有涂色”的小正方体(由8个小正方体组成的棱长为2的正方体)。

  (5)将最底层的小正方体按类归位,验证计数的结果及计算方法。

  要求:将正方体的棱长各种正方体的个数及计算方法填在活动记录表。

  引导:计算所需的数据与原正方体的棱长有什么关系?

  (二)棱长为3的正方体

  学生自主完成,将探究结果填在活动记录表。完成后指名汇报交流。

  (三)棱长分别为5、6的正方体

  学生自主完成,将探究结果填在活动记录表,并在小组内交流。

  投影呈现学生的活动记录结果,通过课件呈现实物加以验证。引导学生初步发现正方体表面涂色问题的一般规律。

  (四)棱长为a的正方体

  提问:如果棱长为n,三面涂色的小正方体有几个?两面涂色、一面涂色和六面都没有涂色的小正方体个数分别怎样表示?

  (五)延伸思考

  课件出示问题:将一个长7厘米、宽5厘米、高4厘米的长方体木块表面涂色后,切成棱长为1厘米的小正方体木块,三面涂色、两面涂色和一面涂色的木块各有几个?

  教学反思

数学六年级教案14

  一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。

  二、教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。

  3、注意渗透类比、转化思想。

  三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。

  四、教学难点:推导圆柱的体积计算公式。

  五、教法要素:

  1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。

  2、原型:圆柱模型。

  3、探究的问题:

  (1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?

  (2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个

  部分?

  (3)怎样计算圆柱的体积?

  六、教学过程:

  (一)唤起与生成。

  1、什么叫物体的体积?我们学过哪些立体图形的体积计算?

  2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?

  切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?

  (二)探究与解决。

  探究:圆柱的体积

  1、 提出问题,启发思考:如何计算圆柱的体积?

  2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方

  体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。

  3、 转化物体,分析推理:

  怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。

  (拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。

  4、全班交流,公式归纳:

  交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的'份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。

  回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?

  5、举一反三,应用规律:

  (1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。

  如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h

  (2)教学例6

  学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

  (三)训练与强化。

  1、基本练习。

  练习三第1题,学生独立完成,这两个都可以直接用V=sh来计算。全班订正,注意培养学生良好的计算习惯。

  2、变式练习。

  第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。

  第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。

  3、综合练习。

  第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=V÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。

  4、提高性练习。22页第10题,学生先小组讨论,再全班交流。

  (四)总结与提高。

  这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。

数学六年级教案15

  教学内容:义务教育课程标准苏教版小学数学六年级上册P56--57 例2、3。

  教学目标:

  1、过自主探究、合作交流,掌握整数除以分数的计算方法并明确算理。

  2、能正确计算整数除以分数,并能解决简单的数学问题。

  3、学生在学习活动中能进行观察、迁移、猜想、验证等数学活动,获得良好的学习情感。

  教学过程:

  一、复习

  1、复习分数除以整数的算法和算理

  2、教师小结:前面同学们已经学习了分数除以整数,它的计算方法

  是用分数乘这个整数的倒数,这节课我们要继续研究分数除法

  二、新授

  1、复习整数除法的意义

  课件出示例2(1):幼儿园李老师把4个同样大的橙子分给小朋友。每人吃两个,可以分给几人?每人吃一个呢?

  学生列式计算,说明列式的理由

  2、揭示课题

  课件出示例2(2):每人吃1/2个,可以分给几人?

  (1)理解1/2个的`含义。

  (2)根据题意,列出算式,并说明理由。

  (3)观察算式特点,根据学生回答,揭示课题:整数除以分数

  3.探究计算方法

  (1) 合作探究计算方法

  布置操作要求:先独立分一分4个橙子图,再与小组同学交流整数除以分数的计算方法。

  (2)学生汇报算法并说明理由。(有可能算法多样化)

  (3)教师结合课件,渗透算法和算理。

  4.验证计算方法

  出示例2(3)指名读题

  (1)先在图中按照题意分一分,填上结果

  (1) 用自己喜欢的方法计算出结果。

  (2) 学生汇报。

  (4)优化算法,使学生明确整数除以这几个分数都可以转化成整数乘分数的倒数。

  (5)观察这三个除法算式的共同特点:分子都是1

  引导学生继续探究:整数除以分子不是1的分数是否也可以用整数乘分数的倒数呢?

  5.总结计算方法

  课件出示例3

  (1) 指名读题、列式并板书。

  (2) 理解2/3米的含义。

  (3) 继续验证方法:

  先在图中分一分,写出分的结果;再用整数乘这个分数倒数的方法

  计算,看分得的结果和计算的结果是否一致。

  (4) 总结计算方法

  观察黑板上的4个算式,都是整数除以分数,他们的计算方法是怎样的?学生尝试总结,教师引导归纳:整数除以分数,就等于整数乘这个分数的倒数。

  三、巩固练习

  1、填一填。进行分数除以整数的转化练习

  2、判断。使学生明确:除号要变乘号,除数要变倒数,而被除数是不变的。

  3、练一练。

  四、全课总结

【数学六年级教案】相关文章:

数学教案中班 人教版六年级数学教案07-20

六年级数学下册教案10-11

六年级数学下册教案08-29

六年级上册数学比的教案07-01

六年级数学教案05-22

小学六年级数学比教案06-07

六年级下册的数学教案07-17

数学的教案07-24

六年级数学《倒数的认识》教案07-07

六年级上册数学《比的应用》教案05-28