初一级上册数学教案

时间:2025-09-17 16:31:02 诗琳 数学教案 我要投稿
  • 相关推荐

苏教版初一级上册数学教案(精选27篇)

  教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。下面是苏教版初一级上册数学教案,请参考!

苏教版初一级上册数学教案(精选27篇)

  初一级上册数学教案 1

  【教学目标】

  1.初步理解集合的概念,知道常用数集的概念及其记法.

  2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号 .

  3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.

  【考纲要求】

  1. 知道常用数集的概念及其记法.

  2. 理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号 .

  【课前导学】

  1.集合的含义: 构成一个集合.

  (1)集合中的元素及其表示: .

  (2)集合中的元素的特性: .

  (3)元素与集合的关系:

  (i)如果a是集合A的元素,就记作__________读作“___________________”;

  (ii)如果a不是集合A的元素,就记作______或______读作“_______________”.

  【思考】构成集合的元素是不是只能是数或点?

  【答】

  2.常用数集及其记法:

  一般地,自然数集记作____________,正整数集记作__________或___________,

  整数集记作________,有理数记作_______,实数集记作________.

  3.集合的`分类:

  按它的元素个数多少来分:

  (1)________________________叫做有限集;

  (2)___________________ _____叫做无限集;

  (3)______________ _叫做空集,记为_____________

  4.集合的表示方法:

  (1)______ __________________叫做列举法;

  (2)________________ ________叫做描述法.

  (3)______ _________叫做文氏图

  【例题讲解】

  例1、 下列每组对象能否构成一个集合?

  (1) 高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;

  (3)所有正三角形的全体; (4)方程 的实数解;(5)不等式 的所有实数解.

  例2、用适当的方法表示下列集合

  ①由所有大于10且小于20的整数组成的集合记作 ;

  ②直线 上点的集合记作 ;

  ③不等式 的解组成的集合记作 ;

  ④方程组 的解组成的集合记作 ;

  ⑤第一象限的点组成的集合记作 ;

  ⑥坐标轴上的点的集合记作 .

  例3、已知集合 ,若 中至多只有一个元素,求实数 的取值范围.

  【课堂检测】

  1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________

  2.已知2a∈A,a2-a∈A,若A含2个元素,则下列说法中正确的是

  ①a取全体实数; ②a取除去0以外的所有实数;

  ③a取除去3以外的所有实数;④a取除去0和3以外的所有实数

  3.已知集合 ,则满足条件的实数x组成的集合

  初一级上册数学教案 2

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1.学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2.联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1.马路用什么几何图形代表?(直线)

  2.文中相关地点用什么代表?(直线上的点)

  3.学校大门起什么作用?(基准点、参照物)

  4.你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2.数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1.什么样的`直线叫数轴?它具备什么条件。

  2.如何画数轴?

  3.根据上述实例的经验,“原点”起什么作用?

  4.你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1.判断下列图形是否是数轴。

  2.口答:数轴上各点表示的数。

  3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1.什么是数轴?

  2.数轴的“三要素”各指什么?

  3.数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  五、板书

  1.数轴的定义。

  2.数轴的三要素(图)。

  3.数轴的画法。

  4.性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1.什么样的直线叫数轴?

  定义:规定了_______、_______、_______的直线叫数轴。

  数轴的三要素:_______、_______、_______。

  2.画数轴的步骤是什么?

  3.“原点”起什么作用?_______

  4.你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1.画一条数轴

  2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的_______边,与原点的距离是_______个单位长度;表示数-a的点在原点的_______边,与原点的距离是_______个单位长度.

  练习:

  1.数轴上表示-3的点在原点的_______侧,距原点的距离是_______;表示6的点在原点的_______侧,距原点的距离是_______;两点之间的距离为_______个单位长度。

  2.距离原点距离为5个单位的点表示的数是_______。

  3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是_______。

  附:目标检测

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

  3.画数轴,观察数轴,在原点左边的点有_______个。

  4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  初一级上册数学教案 3

  教学目标:

  1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

  2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

  3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

  教学重难点:

  重点:解一元一次方程的基本步骤和方法。

  难点:含有分母的一元一次方程的解题方法。

  教学过程:

  一、新课导入:

  请同学们和老师一起解方程:

  并回答:解一元一次方程的一般步骤和最终的目的是什么?

  二、讲授新课

  请给同学们介绍纸草书(P95)。

  问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

  数是多少?

  并引入让同学运用设未知数的方法,列出相应的方程。

  并回答:这个方程和我们以前学习的方程有什么不同?

  同学们和老师一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

  看一看你会不会错:

  (1)解方程:

  (2)解方程:

  典型例题:解方程:

  想一想:去分母时要注意什么问题?

  (1)方程两边每一项都要乘以各分母的最小公倍数

  (2)去分母后如分子中含有两项,应将该分子添上括号

  选一选:

  练一练:当m为何值时,整式和的值相等?

  议一议:如何解方程:

  注意区别:

  1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的`分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

  2、而去分母则是根据等式性质2,对方程的'左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

  课堂小结:

  (1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

  有没有疑问:不是最小公倍数行不行?

  (2)去分母的依据是什么?

  等式性质2

  (3)去分母的注意点是什么?

  1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

  2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

  (4)解一元一次方程的一般步骤:

  布置作业:P98,习题3.3第3题

  补充作业:解方程:

  (1)

  (2)

  板书设计:

  初一级上册数学教案 4

  一、课题

  2.1数怎么不够用了(2)

  二、教学目标

  1.使学生理解有理数的意义,并能将给出的有理数进行分类;

  2.培养学生树立分类讨论的思想。

  三、教学重点和难点

  重点

  难点

  有理数包括哪些数.

  有理数的分类及其分类的标准.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有的认知结构提出问题

  1.什么是正、负数?

  2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

  3.任何一个正数都比0大吗?任何一个负数都比0小吗?

  4.什么是整数?什么是分数?

  根据学生的回答引出新课.

  (二)、讲授新课

  1.给出新的整数、分数概念

  引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

  2.给出有理数概念

  整数和分数统称为有理数,即

  有理数是英语“Rational number”的译名,更确切的译名应译作“比

  3.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充.

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

  并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

  (三)、运用举例 变式练习

  例1

  将下列数按上述两种标准分类:

  例2

  下列各数是正数还是负数,是整数还是分数:

  课堂练习

  25、-100按两种标准分类.

  2、下列各数是正数还是负数,是整数还是分数?

  (四)、小结

  教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  七、练习设计

  1.把下列各数填在相应的括号里(将各数用逗号分开):

  正整数集合:{ …};

  负整数集合:{ …};

  正分数集合:{ …};

  负分数集合:{ …}.

  2.填空题:

  的数是______,在分数集合里的数是______;

  (2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

  3.选择题

  (1)-100不是

  A.有理数 B.自然数 C.整数 D.负有理数

  (2)在以下说法中,正确的是[ ]

  A.非负有理数就是正有理数

  B.零表示没有,不是有理数

  C.正整数和负整数统称为整数

  D.整数和分数统称为有理数

  八、板书设计

  数怎么不够用了(2)

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 例1、例2

  (四)课堂练习 练习设计

  九、教学后记

  在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的`数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

  为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

  1.分类的标准不同,分类的结果也不相同;

  2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

  初一级上册数学教案 5

  教学目标

  1. 能结合实例,了解一元一次不等式组的相关概念。

  2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

  3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。

  教学重、难点

  1..不等式组的.解集的概念。

  2.根据实际问题列不等式组。

  教学方法

  探索方法,合作交流。

  教学过程

  一、 引入课题:

  1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

  2. 由许多问题受到多种条件的限制引入本章。

  二、 探索新知:

  自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

  分别解出两个不等式。

  把两个不等式解集在同一数轴上表示出来。

  找出本题的答案。

  三、 抽象:

  教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)

  初一级上册数学教案 6

  一、教学目标

  【知识与技能】

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  【过程与方法】

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  【情感、态度与价值观】

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  【教学重点】

  数轴的三要素,用数轴上的点表示有理数。

  【教学难点】

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的.形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点A,B,C,D,E表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

  初一级上册数学教案 7

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的`中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

  初一级上册数学教案 8

  教学目标

  1.使学生掌握代数式的值的概念,会求代数式的值;

  2.培养学生准确地运算能力,并适当地渗透对应的思想.

  教学重点和难点

  重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.

  难点:正确地求出代数式的值.

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1.用代数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%.

  2.用语言叙述代数式2n+10的意义.

  3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的.回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

  二、师生共同研究代数式的值的意义

  1.用数值代替代数式里的字母,按代数式指明的`运算,计算后所得的结果,叫做代数式的值.

  2.结合上述例题,提出如下几个问题:

  (1)求代数式2n+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式

  里字母的取值的确定而确定的”之后,可用图示帮助

  学生加深印象.

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

  例1?当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70.

  注意:如果代数式中省略乘号,代入后需添上乘号.

  解:(1)当a=4,b=12时,

  a2-=42-=16-3=13;

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

  最后,请学生总结出求代数值的步骤:

  ①代入数值?②计算结果

  三、课堂练习

  1.(1)当x=2时,求代数式x2-1的值;

  2.填表:(投影)

  (1)(a+b)2;?(2)(a-b)2.

  四、师生共同小结

  首先,请学生回答下面问题:

  1.本节课学习了哪些内容?2.求代数式的值应分哪几步?

  3.在“代入”这一步应注意什么?

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的

  五、作业

  1.当a=2,b=1,c=3时,求下列代数式的值:

  2.填表

  3.填表

  初一级上册数学教案 9

  教学目标

  1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的`理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2、怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3、选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2、“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3、教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4、本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

  初一级上册数学教案 10

  教学设计思路

  “问题是思考的开始”,问题的提出是数学教学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.

  教学目标

  知识与技能:

  1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.

  2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.

  过程与方法:

  经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力,提高语言表达能力.

  情感态度价值观:

  感受数学公式的简洁美、和谐美.

  重点难点

  重点:准确、熟练地运用法则进行计算.

  难点:负指数幂的条件及法则的正确运用.

  教学过程

  1.创设情境,复习导入

  前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

  (1)叙述同底数幂的乘法性质.

  (2)计算:① ② ③

  学生活动:学生回答上述问题.

  (m,n都是正整数)

  教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的'学习打下基础.

  2.提出问题,引出新知

  我国研制的“银河”巨型计算机的运算速度是108次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍?

  怎样计算 呢?

  这就是我们这节课要学习的同底数幂的除法运算.

  3.导向深入,得出性质

  做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)

  按乘方的意义和除法计算:

  (1)

  (2)

  (3)

  (4)

  探究:(1)若a≠0,a15÷a5等于什么?

  (2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?

  学生思考,回答

  师生共同总结:

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  【公式分析与说明】提出问题:在运算过程当中,除数能否为0?

  学生回答:不能.(并说明理由)

  由此得出:同底数幂相除,底数 .教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:

  一般地,这就是说,同底数幂相除,底数不变,指数相减.

  尝试证明:

  4.揭示规律

  由此我们规定

  规律一:任何不等于0的数的0次幂都等于1.

  一般我们规定

  规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

  5.尝试反馈,理解新知

  (补充)例2 自从扫描隧道电子显微镜发明后,便诞生了一门新技术一纳米技术.纳米是长度单位,1 nm (纳米)等于 0.000 000 001 m .请用科学记数法表示 0.000 000 001.

  分析:绝对值较小的数可以用一个有一位整数的数与 10 的负指数幕的乘积的形式来表示.

  学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  6.反馈练习,巩固知识

  练习一

  (1)填空:

  ① ②

  ③ ④

  (2)计算:

  ① ②

  ③ ④

  学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2)

  (3) (4)

  学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

  总结、扩展

  我们共同总结这节课的学习内容.

  学生活动:①同底数幂相除,底数 ,指数 .

  ②由学生谈本书内容体会.

  教法说明:强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  6.小结

  本节主要学习内容:

  同底数幂的除法运算性质.

  零指数与负整数指数的意义.

  用科学记数法表示绝对值较小的数的方法.

  幂的运算与指数运算的关系: (m,n都是正整数); (a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.

  注意的地方:

  在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.

  7.布置作业

  P78 A组3、4 B组2、3

  8.板书设计

  8.3同底数幂的除法

  一、同底数幂的法则

  二、例题 练习

  例1 (补充)例2

  初一级上册数学教案 11

  【教材简析】

  本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃 1/2个、1/3个、1/4 个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3 的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。

  【教学目标】

  1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

  2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。

  【教具准备】

  课件

  【教学过程】

  一、谈话导入

  同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的`养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

  揭题:整数除以分数

  二、提出猜想

  1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

  如果每人吃2个,可以分给几人怎么列式?

  学生口头列式。

  提问:为什么用4÷2计算呢?

  学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

  问:如果每人吃一个呢?

  学生口头列式。

  2、出示:如果“每人吃1/2 个,可以分给几人”又怎么列式?

  学生口头列式,教师板书:4÷1/2

  追问:为什么用除法计算?

  学生回答后,师小结:就是把4个橙子,按 个一份平均分,因此也是用除法计算(课件出示)

  3、谈话:请看屏幕,从图中你数出4÷1/2 得多少?(教师随学生回答板书4÷1/2 =8)

  提问:从这幅图中,你还能想到什么?

  (一个橙子分给2个人,4个橙子就能分给8个人。)

  学生回答,教师恰当评价。

  教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

  4、思考:仔细对比这两个式子,你有什么发现?

  学生先独立思考,再在小组里交流自己的想法。

  反馈时恰当评价。(教师板书4÷1/2 = 4×2)

  三、进行验证

  (一)验证一

  过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

  1、出示:如果每人吃1/4 1/4个,可以分给几人?

  学生口头列式

  提问:按刚才的方法,可以怎么计算?结果是多少?

  (学生回答,教师板书4÷1/4 =4×4=16)

  谈话:结果是否正确,我们来验证一下

  请每个同学拿出4个同样大小的.圆片代表橙子,用笔分一分。

  学生操作,教师巡视指导。

  反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

  小结:操作的结果和刚才计算的结果是一样的。

  2、出示:如果每人吃1/3 1/3个呢?

  请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

  反馈交流(辅以电脑演示)

  小结:通过验证,再次证明了刚才的猜想是正确的。

  (二)验证二

  过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

  1、出示例3(电脑出现图示)

  提问:怎么理解2/3 米?

  2、让学生独立列式算一算。

  3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

  4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

  四、获得结论

  1、观察比较

  学生观察黑板上的一些算式:

  4÷ 1/2= 4×2=8

  4÷1/3 =4×3=12

  4÷1/4 =4×4=16

  4÷2/3 =4×3/2 =6

  说说这些乘式中的第二个因数与除式中的除数有什么关系?

  3、思考概括

  通过以上操作活动你认为整数除以分数可以怎样计算? 小组里交流回报。

  五、巩固练习

  过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

  1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2

  2、找朋友

  3、练习十一第5题

  先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

  4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7

  说明:转化成乘法后,能约分的要先约分。

  5、算一算、比一比

  (1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

  提问:做这组题要注意什么?

  6、实际问题

  谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

  提示:单位用千米/时

  六、课堂小结

  今天学习了整数除以分数的内容,你有什么收获?

  明天将要学习分数除以分数,你有什么想法呢?

  七、布置作业

  书60页第6题。

  初一级上册数学教案 12

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

  点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的'度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

  [巩固练习](教科书5页练习)已知,如图, ,求: 的度数

  [小结]

  邻补角、对顶角.

  [作业]课本P9-1,2P10-7,8

  初一级上册数学教案 13

  教学目标:

  1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3、了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程:

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的.意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.

  2、引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.

  3、引导学生剖析法则

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1、完成课本“想一想”:a?a?a等于什么?

  2、通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3、独立处理例2,从实际情境中学会处理问题的方法。

  4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:

  计算:

  (1)—a2·a6

  (2)(—x)·(—x)3

  (3)ym·ym+1

  (4)?7?8?73

  (5)?6?63

  (6)?5?53?5?。

  (7)?a?b?a?b?75422

  (8)?b?a?a?b?

  (9)x5·x6·x3

  (10)—b3·b3

  (11)—a·(—a)3

  (12)(—a)2·(—a)3·(—a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2、完成课本习题1.4中所有习题。

  初一级上册数学教案 14

  教学目标

  1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

  2. 初步培养学生观察、分析和抽象思维的能力.

  教学重点和难点

  重点:列代数式.

  难点:弄清楚语句中各数量的意义及相互关系.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1?用代数式表示乙数:(投影)

  (1)乙数比x大5;(x+5)

  (2)乙数比x的2倍小3;(2x-3)

  (3)乙数比x的倒数小7;( -7)

  (4)乙数比x大16%?((1+16%)x)

  (应用引导的方法启发学生解答本题)

  2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

  二、讲授新课

  例1 用代数式表示乙数:

  (1)乙数比甲数大5;

  (2)乙数比甲数的2倍小3;

  (3)乙数比甲数的倒数小7;

  (4)乙数比甲数大16%?

  分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

  解:设甲数为x,则乙数的代数式为

  (1)x+5

  (2)2x-3;

  (3) -7;

  (4)(1+16%)x?

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x?

  例2 用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的 与乙数的 的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积?

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

  解:设甲数为a,乙数为b,则

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

  例3 用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数?

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n; (2)5m+2?

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

  例4 设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的 ;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

  分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

  例5 设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个; (2)( m)m个?

  三、课堂练习

  1.设甲数为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的 的.和;

  (2)甲数的 与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的差;

  (4)甲乙的差除以甲乙两数的积的商?

  2.用代数式表示:

  (1)比a与b的和小3的数;

  (2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数;

  (4)比a除b的商的3倍大8的数?

  3.用代数式表示:

  (1)与a-1的和是25的数;

  (2)与2b+1的积是9的数;

  (3)与2x2的差是x的数;

  (4)除以(y+3)的商是y的数?

  〔(1)25-(a-1); (2) ;

  (3)2x2+2; (4)y(y+3)?〕

  四、师生共同小结

  首先,请学生回答:

  1?怎样列代数式?2?列代数式的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

  (1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

  (3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

  五、作业

  1?用代数式表示:

  (1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

  (2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

  2?已知一个长方形的周长是24厘米,一边是a厘米,

  求:(1)这个长方形另一边的长;(2)这个长方形的面积.

  学法探究

  已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

  分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

  当圆环为三个的时候,

  此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

  解:

  =99a+b(cm)

  初一级上册数学教案 15

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的'反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的`前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  初一级上册数学教案 16

  教学目标:

  1.理解有理数的意义.

  2.能把给出的有理数按要求分类.

  3.了解0在有理数分类中的作用.

  教学重点:

  会把所给的各数填入它所在的数集图里.

  教学难点:

  掌握有理数的两种分类.

  教与学互动设计:

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

  说明我们把所有的`这些数统称为有理数.

  试一试你能对以上各种类型的数作出一张分类表吗?

  有理数

  做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

  有理数

  数的集合

  把所有正数组成的`集合,叫做正数集合.

  试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

  (三)应用迁移,巩固提高

  【例1】把下列各数填入相应的集合内:

  ,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

  【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

  有理数有理数

  (四)总结反思,拓展升华

  提问:今天你获得了哪些知识?

  由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

  下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

  (五)课堂跟踪反馈

  夯实基础

  1.把下列各数填入相应的大括号内:

  -7,0.125, ,-3 ,3,0,50%,-0.3

  (1)整数集合{};

  (2)分数集合{};

  (3)负分数集合{ };

  (4)非负数集合{ };

  (5)有理数集合{ }.

  2.下列说法中正确的是(  )

  A.整数就是自然数

  B. 0不是自然数

  C.正数和负数统称为有理数

  D. 0是整数,而不是正数

  提升能力

  3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

  初一级上册数学教案 17

  教学目标

  1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

  2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:

  认识一些基本的几何体,并能描述这些几何体的特征

  教学难点:

  描述几何体的.特征,对几何体进行分类。

  教学过程:

  一、设疑自探

  创设情景,导入新课

  在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

  学生设疑

  让学生自己先思考再提问

  教师整理并出示自探题目

  ①生活常见的几何体有那些?

  ②这些几何体有什么特征

  ③圆柱体与棱柱体有什么的相同之处和不同之处

  ④圆柱体与圆锥体有什么的相同之处和不同之处

  ⑤棱柱的分类

  ⑥几何体的分类

  学生自探(并有简明的自学方法指导)

  举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

  说说它们的区别

  二.解疑合探

  针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

  2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

  活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四.运用拓展:

  引导学生自编习题。

  请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

  教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  课堂小结

  作业布置

  五、教后反思

  初一级上册数学教案 18

  【教学目标】

  引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;

  【教学难点】

  找出题目中的可有可无的已知条件,说一说为什么可以这样认为

  【教学过程】

  问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?

  出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时?

  分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时,可以求出汽车原来的速度。

  学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)

  现在的时间:352÷80=4.4(小时)

  问:用比例的思路该怎么样理解这道题目呢?

  分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的`

  2.5倍。即:11÷2.5=4.4(小时)。

  这样解答使得`甲乙两地公路全长352千米成了多余条件,但是又不影响解答问题。

  【我们来探索】

  一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?

  【总结】

  在解答应用题时要善于应用不同的思路和技巧,巧解问题

  【作业】

  丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?

  丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?

  初一级上册数学教案 19

  学习目标:

  1、学会用计算器进行有理数的除法运算.

  2、掌握有理数的混合运算顺序.

  3、通过探究、练习,养成良好的学习习惯

  学习重点:

  有理数的混合运算

  学习难点:

  运算顺序的确定与性质符号的`处理

  教学方法:

  观察、类比、对比、归纳

  教学过程

  一、学前准备

  1、计算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的问题1,计算方便吗?想过别的方法吗?

  2、由上面的问题2,你的计算方法是先算法,再算法。

  3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

  4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

  5、阅读P36,并动手做做

  三、新知应用

  1、计算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、师生小结

  四、回顾与反思

  请你回顾本节课所学习的主要内容

  3页

  五、自我检测

  1、选择题

  1)若两个有理数的和与它们的积都是正数,则这两个数( )

  A.都是正数B.是符号相同的`非零数C.都是负数D.都是非负数

  2)下列说法正确的是( )

  A.负数没有倒数B.正数的倒数比自身小

  C.任何有理数都有倒数D.-1的倒数是-1

  3)关于0,下列说法不正确的是( )

  A.0有相反数B.0有绝对值

  C.0有倒数D.0是绝对值和相反数都相等的数

  4)下列运算结果不一定为负数的是( )

  A.异号两数相乘B.异号两数相除

  C.异号两数相加D.奇数个负因数的乘积

  5)下列运算有错误的是( )

  A.÷(-3)=3×(-3)B.

  C.8-(-2)=8+2D.2-7=(+2)+(-7)

  6)下列运算正确的是( )

  A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

  2、计算

  1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

  3)(—48)÷8—(—25)×(—6)4)

  六、作业

  1、P39第7题(4、5、7、8)、第8题

  2、选做题:P39第10、11、12、1314、15题

  初一级上册数学教案 20

  【教材简析】

  本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃 1/2个、1/3个、1/4 个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3 的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的.知识体系。

  【教学目标】

  1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

  2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。

  【教具准备】

  课件

  【教学过程】

  一、谈话导入

  同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

  揭题:整数除以分数

  二、提出猜想

  1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

  如果每人吃2个,可以分给几人怎么列式?

  学生口头列式。

  提问:为什么用4÷2计算呢?

  学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

  问:如果每人吃一个呢?

  学生口头列式。

  2、出示:如果“每人吃1/2 个,可以分给几人”又怎么列式?

  学生口头列式,教师板书:4÷1/2

  追问:为什么用除法计算?

  学生回答后,师小结:就是把4个橙子,按 个一份平均分,因此也是用除法计算(课件出示)

  3、谈话:请看屏幕,从图中你数出4÷1/2 得多少?(教师随学生回答板书4÷1/2 =8)

  提问:从这幅图中,你还能想到什么?

  (一个橙子分给2个人,4个橙子就能分给8个人。)

  学生回答,教师恰当评价。

  教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

  4、思考:仔细对比这两个式子,你有什么发现?

  学生先独立思考,再在小组里交流自己的想法。

  反馈时恰当评价。(教师板书4÷1/2 = 4×2)

  三、进行验证

  (一)验证一

  过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

  1、出示:如果每人吃1/4 1/4个,可以分给几人?

  学生口头列式

  提问:按刚才的方法,可以怎么计算?结果是多少?

  (学生回答,教师板书4÷1/4 =4×4=16)

  谈话:结果是否正确,我们来验证一下

  请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。

  学生操作,教师巡视指导。

  反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

  小结:操作的结果和刚才计算的结果是一样的。

  2、出示:如果每人吃1/3 1/3个呢?

  请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

  反馈交流(辅以电脑演示)

  小结:通过验证,再次证明了刚才的猜想是正确的。

  (二)验证二

  过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

  1、出示例3(电脑出现图示)

  提问:怎么理解2/3 米?

  2、让学生独立列式算一算。

  3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

  4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

  四、获得结论

  1、观察比较

  学生观察黑板上的一些算式:

  4÷ 1/2= 4×2=8

  4÷1/3 =4×3=12

  4÷1/4 =4×4=16

  4÷2/3 =4×3/2 =6

  说说这些乘式中的第二个因数与除式中的除数有什么关系?

  3、思考概括

  通过以上操作活动你认为整数除以分数可以怎样计算? 小组里交流回报。

  五、巩固练习

  过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

  1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2

  2、找朋友

  3、练习十一第5题

  先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

  4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7

  说明:转化成乘法后,能约分的要先约分。

  5、算一算、比一比

  (1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

  提问:做这组题要注意什么?

  6、实际问题

  谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

  提示:单位用千米/时

  六、课堂小结

  今天学习了整数除以分数的内容,你有什么收获?

  明天将要学习分数除以分数,你有什么想法呢?

  七、布置作业

  书60页第6题。

  初一级上册数学教案 21

  一、素质教育目标

  (一)知识教学点

  使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小。

  (二)能力训练点

  逐步培养学生观察、比较、分析、概括等逻辑思维能力。

  (三)德育渗透点

  培养学生良好的学习习惯。

  二、教学重点、难点和疑点

  1、重点:由锐角的正弦值或余弦值,查出这个锐角的大小。

  2、难点:由锐角的正弦值或余弦值,查出这个锐角的大小。

  3、疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错。

  三、教学步骤

  (一)明确目标

  1、锐角的正弦值与余弦值随角度变化的规律是什么?

  这一规律也是本课查表的依据,因此课前还得引导学生回忆。

  答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大)。

  2、若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______。

  3、不查表,比较大小:

  (1)sin20°______sin20°15′;

  (2)cos51°______cos50°10′;

  (3)sin21°______cos68°。

  学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案。

  3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算。

  (二)整体感知

  已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值。反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小。因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑。而且通过逆向思维,可能很快会掌握已知函数值求角的方法。

  (三)重点、难点的`学习与目标完成过程。

  例8已知sinA=0.2974,求锐角A。

  学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的`过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力。

  解:查表得sin17°18′=0.2974,所以

  锐角A=17°18′。

  例9已知cosA=0.7857,求锐角A。

  分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法。这时教师让学生讨论,在探讨中寻求办法。这对解决本题会有好处,使学生印象更深,理解更透彻。

  若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857。但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′。但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′。

  解:查表得cos38°12′=0.7859,所以:

  0.7859=cos38°12′。

  值减0.0002角度增1′

  0.7857=cos38°13′,即锐角A=38°13′。

  例10已知cosB=0.4511,求锐角B。

  例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致。教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成。

  解:0.4509=cos63°12′

  值增0.0003角度减1′

  0.4512=cos63°11′

  ∴锐角B=63°11′

  为了对例题加以巩固,教师在此应设计练习题,教材P。15中2、3。

  2、已知下列正弦值或余弦值,求锐角A或B:

  (1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;

  (2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931。

  此题是配合例题而设置的,要求学生能快速准确得到答案。

  (1)45°6′,69°34′,20°39′,34°40′;

  (2)34°0′,40°26′,72°34′,6°44′。

  3、查表求sin57°与cos33°,所得的值有什么关系?

  此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°)。

  (四)总结、扩展

  本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”。

  四、布置作业

  教材复习题十四A组3、4,要求学生只查正、余弦。

  五、板书设计

  14.1正弦和余弦(五)

  例8例9例10

  初一级上册数学教案 22

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:

  知道什么是正数和负数,理解数0表示的量的意义。

  教学难点:

  理解负数,数0表示的量的意义。

  教学方法:

  师生互动与教师讲解相结合。

  教具准备:

  地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、等是正数(也可加上“十”)

  -3、-2、-0.5、-等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的.分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的`意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少?

  (2)多多被记作一12分,他实际得分是多少?

  初一级上册数学教案 23

  一.知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.

  二.过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.

  三.情感态度与价值观

  培养学生积极思考,合作交流的意识和能力.

  教学重、难点与关键

  1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.

  2.难点:正确理解负数的概念.

  3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.

  教具准备

  投影仪.

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.

  用正负数表示具有相反意义的量

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的`量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.

  (6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.

  六、巩固练习

  课本第3页,练习1、2、3、4题.

  七、课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.

  八、作业布置

  1.课本第5页习题1.1复习巩固第1、2、3题.

  九、板书设计

  初一级上册数学教案 24

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

  请学生举出一些相反意义的量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的.分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

  初一级上册数学教案 25

  教学目标

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  教学难点

  两个负数大小的比较

  知识重点绝对值的概念

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,

  ①用有理数表示黄老师两次所行的路程;

  ②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的`距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体验数学知识与生活实际的联系。

  初一级上册数学教案 26

  教学目标

  掌握积的乘方法则,并能够运用法则进行计算。

  会进行简单的幂的混合运算。

  在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  积的乘方法则的运用。

  难点

  积的乘方法则的推导以及幂的混合运算。

  教学过程

  一、复习导入

  1.幂的乘方法则是什么?

  2.如果一个正方体的`棱长为,那么它的体积是多少?

  如何计算呢?下面我们就来探索积的'乘方的运算法则。

  二、新课讲解

  探究新知

  1.思考:

  前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?

  学生讨论,师生共同写出解答过程:

  2.发现:

  从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。

  通过思考、交流,得出:(n是正整数)

  要求学生完成法则的语言叙述和推导过程。

  用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

  推导过程:略

  3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?

  学生独立思考、互相交流,然后向全班汇报成果。

  三、典例剖析

  例1计算:

  师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。

  例2计算:

  先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。

  四、课堂练习

  基础练习

  1.计算:

  2.下面的计算对不对?如果不对,应怎样改正?

  3.计算:

  教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。

  提高训练:

  3.计算:

  五、小结

  师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  1.P40第3题

  2.计算:

  初一级上册数学教案 27

  教材分析:

  1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。

  2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

  3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

  4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

  5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

  6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

  7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

  8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

  学情分析:

  1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。

  2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。

  3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。

  教学目标:

  知识目标: 等腰三角形的相关概念,两个定理的理解及应用。

  技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的`结论。

  情感目标: 体会数学的对称美,体验团队精神,培养合作精神。

  教学中的重点、难点:

  重点:

  1、等腰三角形对称的概念。

  2、“等边对等角”的理解和使用。

  3、“三线合一”的理解和使用。

  难点:

  1、等腰三角形三线合一的具体应用。

  2、等腰三角形图形组合的观察,总结和分析。

  主要教学手段及相关准备:

  教学手段:

  1、使用导学法、讨论法。

  2、运用合作学习的方式,分组学习和讨论。

  3、运用多媒体辅助教学。

  4、调动学生动手操作,帮助理解。

  准备工作:

  1、多媒体课件片断,辅助难点突破。

  2、学生课前分小组预习,上课时按小组落座。

  3、学生自带剪刀,圆规,直尺等工具。

  4、每人得到一张印有“长度为a的线段”的纸片。

  教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:

  1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。

  2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。

  3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。

【初一级上册数学教案】相关文章:

五年级上册数学教案03-20

小学6年级上册数学教案01-07

三年级上册数学教案06-28

四年级上册数学教案07-26

一年级上册数学教案11-03

二年级上册数学教案11-06

三年级上册数学教案09-15

人教版七年级上册数学教案11-12

人教版五年级上册《练习课》数学教案11-12

(精品)二年级上册数学教案07-18