- 相关推荐
常考的初中奥数试题归纳
导语:想要在奥数的比赛中却得好成绩,方法技巧和量的习题练习一样都不能少,今天小编为大家总结了经典的奥数题,希望对大家有所帮助!欢迎阅读,仅供参考!

常考的初中奥数试题归纳 1
填空题:
①计算:定义一种新运算 a☆b 满足:a☆b=b×10+a×2.那么2011☆130=_____________.
②从 1999 年到2010 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2010 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.
③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是 平方厘米(π取3.14).
④某届“数学解题能力展示”读者评选活动初试共有12000 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的
___________.
⑤是一个除法竖式.这个除法竖式的被除数是___________.
⑥算式 1!×3-2!×4+3!×5-4!×6++2009!×2011-2010!×2012+2011!的计算结果是___________.
⑦春节临近,从2011 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2011 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.
⑧有一个整数,它恰好是它的约数个数的.2011 倍.这个整数的最小值是___________.
⑨一个新建 5 层楼房的一个单元每层有东西2 套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5 人在花园中聊天: 赵说:“我家是第3 个入住的,第1 个入住的就住我对门.” 钱说:“只有我一家住在最高层.”
孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106 号,104 号空着,108 号也空着.”
他们说的话全是真话.设第1、2、3、4、5 家入住的房号的个位数依次为A、B、C、D、E,那么五位数ABCDE =___________.
⑩6 支足球队,每两队间至多比赛一场.如果每队恰好比赛了2 场,那么符合条件的比赛安排共有___________ 种.
0~9 可以组成两个五位数A 和B,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有___________ 个.
甲、乙两人分别从A、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B.当甲、乙两人第一次迎面相遇在C 地时,丙还有100 米才到C;当丙走到C 时,甲又往前走了108 米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A、B 两地间的路程是___________米.
如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为___________平方厘米.
用 36 个3×2×1 的实心小长方体拼成一个6×6×6 的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到___________个小长方体.
常考的初中奥数试题归纳 2
一、 选择题(每小题3分,共30分)
1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )
A、(x-p)2=5 B、(x-p)2=9
C、(x-p+2)2=9 D、(x-p+2)2=5
2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )
A、-1 B、0 C、1 D、2
3、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为( )
A、2005 B、2003 C、-2005 D、4010
4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )
A、k≤- B、k≥- 且k≠0
C、k≥- D、k>- 且k≠0
5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )
A、 x2+3x-2=0 B、x2-3x+2=0
C、x2-2x+3=0 D、x2+3x+2=0
6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )
A、-2 B、-1 C、0 D、1
7、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )
A、300(1+x)=363 B、300(1+x)2=363
C、300(1+2x)=363 D、363(1-x)2=300
8、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )
A、 x2+4x-15=0 B、x2-4x+15=0
C、x2+4x+15=0 D、x2-4x-15=0
9、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )
A、2 B、0 C、-1 D、
10、已知直角三角形x、y两边的.长满足|x2-4|+ =0,则第三边长为( )
A、 2 或 B、 或2
C、 或2 D、 、2 或
二、 填空题(每小题3分,共30分)
11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .
12、一元二次方程x2-3x-2=0的解是 .
13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .
14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .
15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .
16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)
17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.
18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .
19、如果方程3x2-ax+a-3=0只有一个正根,则 的值是 .
20、已知方程x2+3x+1=0的两个根为α、β,则 + 的值为 .
三、 解答题(共60分)
21、解方程(每小题3分,共12分)
(1)(x-5)2=16 (2)x2-4x+1=0
(3)x3-2x2-3x=0 (4)x2+5x+3=0
22、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+22)(x2+2)=11,求a的值.
23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0
(1) 当m取何值时,方程有两个实数根?
(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根
(1) 求k的取值范围
(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
25、(8分)已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.
26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2
求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.
27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克
(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
常考的初中奥数试题归纳 3
一、填空题
1 .已知不等式 3x-a ≤ 0 的正整数解恰是 1 , 2 , 3 ,则 a 的取值范围是 。
2 .已知关于 x 的不等式组 无解,则 a 的取值范围是 。
3 .不等式组 的整数解为 。
4 .如果关于 x 的不等式( a-1 ) x
5 .已知关于 x 的不等式组 的解集为 ,那么 a 的取值范围是 。
二、选择题
6 .不等式组 的最小整数解是( )
A . 0 B . 1 C . 2 D . -1
7 .若 -1
A . -a
8 .若方程组 的解满足条件 ,则 k 的取值范围是( )
A . B . C . D .
9 .如果关于 x 的不等式组 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )
A.49对 B.42对 C.36对 D.13对
10.关于x的不等式组 只有5个整数解,则a的取值范围是( )
A. B.
C. D.
三、解答题
12.
13.已知a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m =3a+b-7c,记x为m的最大值,y为m的最小值,求xy的值。
14.已知关于x、y的方程组 的解满足 ,化简 。
15.已知 ,求 的最大值和最小值。
16.某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的`相关数据:
甲 乙 A(单位:千克) 0.5 0.2 A(单位:千克) 0.3 0.4 假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。
设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
17.据电力部门统计,每天8点至21点是用电高峰期,简称“峰时”,21点至次日8点是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间 换表前 换表后 峰时(8点至21点) 谷时(21点~次日8点) 电价 0.52元/千瓦时 x元/千瓦时 y元/千瓦时 已知每千瓦时峰时价比谷时价高0.25元,小卫家对换表后最初使用的100千瓦时用电情况进行统计分析知:峰时用电量占80%,谷时用电量点20%,与换表前相比,电费共下降2元。
请你求出表格中的x和y的值;
小卫希望通过调整用电时间,使她家以后每使用100千瓦时的电费与换表前相比下降10元至15元(包括10元和15元)。假设小卫家今后“峰时”用电量占整个家庭用电量的z%,那么:在什么范围时,才能达到小卫的期望?
答案提示:
1,93 3,-2;-3 4,7 5,a≤-2
【常考的初中奥数试题归纳】相关文章:
奥数的作文07-06
爸爸教我学奥数的作文08-07
实用我学奥数的心得10-18
我的奥数老师优秀作文12-30
活力青奥,青春南京我期待的青奥作文02-22
青奥会作文08-07
环保青奥作文04-17
南京青奥作文07-07
作文:我与青奥同在07-07
文明迎青奥作文02-23