材料学专业英语词汇

时间:2021-03-01 16:51:04 英语词汇 我要投稿

材料学专业英语词汇精选

  篇一:材料学专业英语词汇

材料学专业英语词汇精选

  化学元素(elements)化学元素,简称元素,是化学元素周期表中的基本组成,现有113种元素,其中原子序数从93到113号的元素是人造元素。

  物质 (matter) 物质是客观实在,且能被人们通过某种方式感知和了解的东西,是元素的载体。

  材料 (materials) 材料是能为人类经济地、用于制造有用物品的物质。

  化学纤维 (man-made fiber, chemical fiber) 化学纤维是用天然的或合成的高聚物为原料,主要经过化学方法加工制成的纤维。可分为再生纤维、合成纤维、醋酯纤维、无机纤维等。

  芯片(COMS chip)芯片是含有一系列电子元件及其连线的小块硅片,主要用于计算机和其他电子设备。

  光导纤维(optical waveguide fibre)光以波导方式在其中传输的光学介质材料,简称光纤。

  激光 (laser) (light amplification by stimulated emission of radiation简写为: laser)

  激光是利用辐射计发光放大原理而产生的一种单色(单频率)、定向性好、干涉性强、能量密度高的光束。

  超导 (Superconduct) 物质在某个温度下电阻为零的现象为超导,我们称具有超导性质的材料为超导体。

  仿生材料 (biomimetic matorials) 仿生材料是模仿生物结构或功能,人为设计和制造的一类材料。

  材料科学 (materials science) 材料科学是一门科学,它从事于材料本质的发现、分析方面的研究,它的目的在于提供材料结构的统一描绘,或给出模型,并解释这种结构与材料的性能之间的关系。

  材料工程 (materials engineering) 材料工程属技术的范畴目的在于采用经济的而又能为社会所接受的生产工艺、加工工艺控制材料的结构、性能和形状以达到使用要求。

  材料科学与工程 (materials science and engineering) 材料科学与工程是研究有关材料的成份、结构和制造工艺与其性能和使用性能间相互关系的知识及这些

  知识的应用,是一门应用基础科学。材料的成份、结构,制造工艺,性能及使用性能被认为是材料科学与工程的四个基本要素。

  成份 (composition) 成分是指材料的化学组成及其所占比例。

  组织、结构 (morphology 、 structure) 组织结构是表示材料微观特征的。组织是相的形态、分布的图象,其中用肉眼和放大镜观察到的为宏观组织,用显微镜观察到的为显微组织,用电子显微镜观察到的为电子显微组织。结构是指材料中原子或分子的排列方式。

  性能(property)性能是指材料所具有的性质与效用。

  工艺 (process) 工艺是将原材料或半成品加工成产品的方法、技术等。

  使用性能 (performance) 材料在具体的使用条件和环境下所表现出来的行为 电负性 ( electro negativity ) 周期表中各元素的原子吸引电子能力的一种相对标度为电负性,又称负电性。元素的电负性愈大,吸引电子的倾向愈大,非金属性也愈强。电负性的定义和计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:①LC鲍林提出的标度。根据热化学数据和分子的键能,指定氟的电负性为3.98,计算其他元素的相对电负性。②RS密立根从电离势和电子亲合能计算的绝对电负性。③AL阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。利用电负性值时,必须是同一套数值进行比较。

  离子键 (ionic bond ) 离子键是通过异性电荷之间的吸引产生的化学结合作用,又称电价键。电离能小的金属原子(如 碱金属 )和电子亲合能大的非金属原子(如卤素)接近时,前者将失去电子形成正离子,后者将获得电子形成负离子,正负离子通过库仑作用相互吸引。当这种吸引力与离子的电子云之间的排斥力达到平衡时,形成稳定的以离子键结合的体系。

  共价键 (covalent bond) 共价键是原子之间通过共享电子而产生的化学结合作用。典型的共价键存在于同核双原子分子中,由每个原子提供一个电子构成成键电子对。这对电子的自旋方向相反,集中在中间区域,并吸引带正电的两个原子的核心部分而把它们结合起来。在异核双原子分子中,2个原子的核心部分对成键电子的吸引力不同,成键电子偏向一方

  金属键 (metallic bond ) 使金属原子结合成金属的相互作用。金属原子的电离能低,容易失去电子而形成正离子和自由电子,正离子整体共同吸引自由电子而结

  合在一起。金属键可看作高度离域的 共价键 ,但没有饱和性和方向性。金属键的显著特征是成键电子可在整个聚集体中流动,这使金属呈现出特有的属性:良好的导热性和导电性、高的热容和熵值、延展性和金属光泽等。

  分子键 (molecule bond) 惰性气体分子间是靠分子键结合的,其实质是分子偶极矩间的库仑相互作用,这种结合键较弱。其分子间相互作用力为范德华力。 氢键 (hydrogen bond) 一个与电负性高的原子X共价结合的氢原子(X-H)带有部分正电荷,能再与另一个电负性高的原子(如Y)结合,形成一个聚集体X-H…Y的化学结合作用。X、Y原子的电负性越大、半径越小, 则形成的氢键越强。例如,F-H…F是最强的氢键。氢键表面上有饱和性和方向性:一个H原子只能与两个其他原子结合,X-H…Y要尽可能成直线。但氢键H…Y之间的作用主要是离子性的,呈现的方向性和饱和性主要是由X和Y之间的库仑斥力决定的。氢键的键能比较小,通常只有17~25千焦/摩尔。但氢键的形成对物质的性质有显著影响,例如使熔点和沸点升高;溶质与溶剂之间形成氢键,使溶解度增大;在核磁共振谱中氢键使有关质子的化学位移移向低场;在红外光谱中氢键X-H…Y的形成使X-H的特征振动频率变小并伴有带的加宽和强度的增加;氢键的形成决定蛋白质分子的构象,在生物体中起重要的作用。

  晶体 (crystal) 微粒(原子、分子或离子) 在空间呈三维周期性规则排列的固体。自然界的物质有3种存在形态,即气体、液体和固体, 固体物质又有晶体和非晶态之分,例如玻璃是非晶态物质。固体物质中绝大多数都是晶体,如金属、合金、硅酸盐,大多数无机化合物和一些有机化合物,甚至植物纤维都是晶体。有些晶体具有规则的多面体外形,如水晶,称为单晶体;有些则没有规则整齐的外形,如金属,整个固体是由许多取向随机的微小单晶颗粒组合而成,这样的固体称为多晶体。

  晶体的一切性质无不与其内部结构有三维周期性这个特征密切相关,如晶体具有固定的熔点、各向异性、对称性、能使X射线发生衍射。固体物质是否为晶体,一般用X射线衍射法予以鉴定。另外,晶体还具有对称性。

  准晶 (Quasicrystal)准晶是同时具有长程准周期平移性和非晶体学旋转对称性的固态有序相。准周期性和非晶体学对称性构成了准晶结构的核心特征。

  非晶(amorphism)与晶体不同,非晶体原子排列是短程有序、长程无序,固体的性能是各向同性的。

  液晶 (liquid crystal) 液晶态是介于三维有序晶态与无序晶态之间的一种中间态。在热力学上是稳定的,它既具有液体的易流动性,又具有晶体的双折射等各向异性的特征。处于液晶态的物质,其分子排列存在位置上的无序性,但在取向上仍有一维或二维的长程有序性,因此液晶又可称为“位置无序晶体”或“取向有序液体”。液晶材料都是有机化合物,有小分子也有高分子,其数量已近万种,通常将其分为二大类,热致液晶和溶致液晶。热致液晶只在一定温度范围内呈现液晶态,即这种物质的晶体在加热熔化形成各向同性的液体之前形成液晶相。热致液晶又有许多类型,主要有向列型、近晶型和胆甾型。溶致液晶是一种只有在溶于某种溶质中才呈现液晶态的物质。

  基元 (element) 组成晶体的原子、离子、分子或原子团统称称为晶体的基本结构单元,简称基元。

  点阵 (lattice) 晶体基元周期性排列的点的集合,它就称为“晶格”(或点阵),这些点被称为格点。因此,可以说晶体的结构是由组成晶体的基元加上空间点阵来决定的。

  晶胞 (crystal cell) 晶胞是晶体的基本结构单位。反映晶体结构三维周期性的晶格将晶体划分为一个个彼此互相并置而等同的平行六面体,即为晶胞。晶胞包括两个要素:一是晶胞的大小、型式;另一是晶胞的内容,前者主要指晶胞参数的大小,即平行六面体的边长a 、b、c和夹角α、β、γ的'大小, 以及与晶胞对应的空间点阵型式,即属于简单格子P还是带心格子I、F或C等;后者主要指晶胞中有哪些原子、离子以及它们在晶胞中的分布位置等。

  面心立方结构(fcc——face-centered-cubic),体心立方结构(bcc——body-centered-cubic)和密排六方结构(hcp——hexagonal close-packed)

  金属所具有的典型晶体结构为面心立方结构 (fcc)(图2-27),体心立方结构(bcc)(图2-28)和密排六方结构(hcp)(图2-29),皆属于立方结构晶系。 具有面心立方结构的常见金属有: γ-Fe 、Al、Ni、Cu、Ag、Au、Pt,等

  具有体心立方结构的常见金属有:β-Ti、V、Cr、α-Fe、β-Zr、Nb、Mo、Ta、

  W等

  具有密排六方结构的常见金属有:α-Ti、α-Zr、Co、Mg、Zn等

  离子键 (ionic bond ) 离子键是通过异性电荷之间的吸引产生的化学结合作用,又称电价键。电离能小的金属原子(如 碱金属 )和电子亲合能大的非金属原子(如卤素)接近时,前者将失去电子形成正离子,后者将获得电子形成负离子,正负离子通过库仑作用相互吸引。当这种吸引力与离子的电子云之间的排斥力达到平衡时,形成稳定的以离子键结合的体系。离子键的特征是作用力强,而且随距离的增大减弱较慢;作用不受方向性和饱和性的限制,一个离子周围能容纳多少个异性离子及其配置方式,由各离子间的库仑作用决定。以离子键结合的体系倾向于形成晶体,以便在一个离子周围形成尽可能多的离子键,例如NaCl分子倾向于聚集为NaCl晶体,使每个钠(或氯)离子周围的离子键从1个变为6个。 硅酸盐结构 (silicate structure) 硅酸盐结构是一种共价晶体的结构,硅酸盐的基本结构单元就是 四面体(图2-33),硅原子位于氧原子四面体间隙中,每个氧原子外层只有7个电子,为-1价,还能和其他金属离子键合,其中Si的配位数是4,氧的配位数是2,Si-O-Si的结合键间键角接近145°。这种硅氧四面体可以孤立地在结构中存在,如镁橄榄石Mg2SiO4 ,锆英石ZrSiO4等;也可以通过其顶点互相连接;除可以连成骨架状外,还可以连成链状和层状(图2-34)。莫莱石就是链状硅酸盐,高岭土和滑石则是层状硅酸盐。

  离子晶体结构 (ion crystal structure) 离子晶体是由正负离子通过离子键,按一定方式堆积起来而形成的,也就是说,离子晶体的基元是离子而不是原子了,这些离子化合物的晶体结构必须确保电中性,而又能使不同尺寸的离子有效地堆积在一起。多数盐类,碱类(金属氢氧化物)及金属氧化物都形成离子晶体。 周期性 (periodicity) 对空间点阵,可以看成是由几何点沿空间三个不共面的方向各按一定距离无限重复地平移构成(图2-20),每个方向的一定平移距离称为该点阵在该方向的周期,故周期性也可以称之为平移对称性。理想晶体的内部结构是组成晶体的原子、分子或原子团等在三维空间中有规则地周期性重复排列,这种周期性排列是晶体最基本的特点,也是研究晶体各种物理性质的重要基础。

  对称性 (symmetry) 晶体的对称性是指晶体经过某种几何变换(平移、旋转等操

  篇二:材料学专业英语词汇

  化学元素(elements)化学元素,简称元素,是化学元素周期表中的基本组成,现有113种元素,其中原子序数从93到113号的元素是人造元素。

  物质(matter) 物质是客观实在,且能被人们通过某种方式感知和了解的东西,是元素的载体。

  材料(materials)材料是能为人类经济地、用于制造有用物品的物质。

  化学纤维 (man-made fiber, chemical fiber)化学纤维是用天然的或合成的高聚物为原料,主要经过化学方法加工制成的纤维。可分为再生纤维、合成纤维、醋酯纤维、无机纤维等。

  芯片(COMS chip)芯片是含有一系列电子元件及其连线的小块硅片,主要用于计算机和其他电子设备。

  光导纤维 (optical waveguide fibre)光以波导方式在其中传输的光学介质材料,简称光纤。

  激光(laser)(light amplification by stimulated emission of radiation简写为: laser)

  激光是利用辐射计发光放大原理而产生的一种单色(单频率)、定向性好、干涉性强、能量密度高的光束。

  超导(Superconduct)物质在某个温度下电阻为零的现象为超导,我们称具有超导性质的材料为超导体。

  仿生材料(biomimetic matorials)仿生材料是模仿生物结构或功能,人为设计和制造的一类材料。

  材料科学(materials science)材料科学是一门科学,它从事于材料本质的发现、分析方面的研究,它的目的在于提供材料结构的统一描绘,或给出模型,并解释这种结构与材料的性能之间的关系。

  材料工程(materials engineering)材料工程属技术的范畴目的在于采用经济的而又能为社会所接受的生产工艺、加工工艺控制材料的结构、性能和形状以达到使用要求。

  材料科学与工程(materials science and engineering)材料科学与工程是研究有关材料的成份、结构和制造工艺与其性能和使用性能间相互关系的知识及这些知识的应用,是一门应用基础科学。材料的成份、结构,制造工艺,性能及使用性能被认为是材料科学与工程的四个基本要素。

  成份(composition)成分是指材料的化学组成及其所占比例。

  组织、结构(morphology 、 structure)组织结构是表示材料微观特征的。组织是相的形态、分布的图象,其中用肉眼和放大镜观察到的为宏观组织,用显微镜观察到的为显微组织,用电子显微镜观察到的为电子显微组织。结构是指材料中原子或分子的排列方式。

  性能(property)性能是指材料所具有的性质与效用。

  工艺 (process)工艺是将原材料或半成品加工成产品的方法、技术等。

  使用性能(performance)材料在具体的使用条件和环境下所表现出来的行为

  电负性 ( electro negativity )周期表中各元素的原子吸引电子能力的一种相对标度为电负性,又称负电性。元素的电负性愈大,吸引电子的倾向愈大,非金属性也愈强。电负性的定义和计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:①LC鲍林提出的标度。根据热化学数据和分子的键能,指定氟的电负性为3.98,计算其他元素的相对电负性。②RS密立根从电离势和电子亲合能计算的绝对电负性。③AL阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。利用电负性值时,必须是同一套数值进行比较。

  离子键(ionic bond )离子键是通过异性电荷之间的吸引产生的化学结合作用,又称电价键。电离能小的金属原子(如 碱金属 )和电子亲合能大的非金属原子(如卤素)接近时,前者将失去电子形成正离子,后者将获得电子形成负离子,正负离子通过库仑作用相互吸引。当这种吸引力与离子的电子云之间的排斥力达到平衡时,形成稳定的以离子键结合的体系。

  共价键(covalent bond) 共价键是原子之间通过共享电子而产生的化学结合作用。典型的共价键存在于同核双原子分子中,由每个原子提供一个电子构成成键电子对。这对电子的自旋方向相反,集中在中间区域,并吸引带正电的两个原子的核心部分而把它们结合起来。在异核双原子分子中,2个原子的核心部分对成键电子的吸引力不同,成键电子偏向一方

  金属键 (metallic bond )使金属原子结合成金属的相互作用。金属原子的电离能低,容易失去电子而形成正离子和自由电子,正离子整体共同吸引自由电子而结合在一起。金属键可看作高度离域的 共价键 ,但没有饱和性和方向性。金属键的显著特征是成键电子可在整个聚集体中流动,这使金属呈现出特有的属性:良好的导热性和导电性、高的热容和熵值、延展性和金属光泽等。

  分子键(molecule bond)惰性气体分子间是靠分子键结合的,其实质是分子偶极矩间的库仑相互作用,这种结合键较弱。其分子间相互作用力为范德华力。

  氢键(hydrogen bond)一个与电负性高的原子X共价结合的氢原子(X-H)带有部分正电荷,能再与另一个电负性高的原子(如Y)结合,形成一个聚集体X-H…Y的化学结合作用。X、Y原子的电负性越大、半径越小, 则形成的氢键越强。例如,F-H…F是最强的氢键。氢键表面上有饱和性和方向性:一个H原子只能与两个其他原子结合,X-H…Y要尽可能成直线。但氢键H…Y之间的作用主要是离子性的,呈现的方向性和饱和性主要是由X和Y之间的库仑斥力决定的。氢键的键能比较小,通常只有17~25千焦/摩尔。但氢键的形成对物质的性质有显著影响,例如使熔点和沸点升高;溶质与溶剂之间形成氢键,使溶解度增大;在核磁共振谱中氢键使有关质子的化学位移移向低场;在红外光谱中氢键X-H…Y的形成使X-H的特征振动频率变小并伴有带的加宽和强度的增加;氢键的形成决定蛋白质分子的构象,在生物体中起重要的作用。

  晶体 (crystal)微粒(原子、分子或离子) 在空间呈三维周期性规则排列的固体。自然界的物质有3种存在形态,即气体、液体和固体, 固体物质又有晶体和非晶态之分,例如玻璃是非晶态物质。固体物质中绝大多数都是晶体,如金属、合金、硅酸盐,大多数无机化合物和一些有机化合物,甚至植物纤维都是晶体。有些晶体具有规则的多面体外形,如水晶,称为单晶体;有些则没有规则整齐的外形,如金属,整个固体是由许多取向随机的微小单晶颗粒组合而成,这样的固体称为多晶体。

  晶体的一切性质无不与其内部结构有三维周期性这个特征密切相关,如晶体具有固定的熔点、各向异性、对称性、能使X射线发生衍射。固体物质是否为晶体,一般用X射线衍射法予以鉴定。另外,晶体还具有对称性。

  准晶 (Quasicrystal)准晶是同时具有长程准周期平移性和非晶体学旋转对称性的固态有序相。准周期性和非晶体学对称性构成了准晶结构的核心特征。

  非晶(amorphism) 与晶体不同,非晶体原子排列是短程有序、长程无序,固体的性能是各向同性的。

  液晶(liquid crystal) 液晶态是介于三维有序晶态与无序晶态之间的一种中间态。在热力学上是稳定的,它既具有液体的易流动性,又具有晶体的双折射等各向异性的特征。处于液晶态的物质,其分子排列存在位置上的无序性,但在取向上仍有一维或二维的长程有序性,因此液晶又可称为“位置无序晶体”或“取向有序液体”。液晶材料都是有机化合物,有小分子也有高分子,其数量已近万种,通常将其分为二大类,热致液晶和溶致液晶。热致液晶只在一定温度范围内呈现液晶态,即这种物质的晶体在加热熔化形成各向同性的液体之前形成液晶相。热致液晶又有许多类型,主要有向列型、近晶型和胆甾型。溶致液晶是一种只有在溶于某种溶质中才呈现液晶态的物质。

  基元(element) 组成晶体的原子、离子、分子或原子团统称称为晶体的基本结构单元,简称基元。

  点阵(lattice) 晶体基元周期性排列的点的集合,它就称为“晶格”(或点阵),这些点被称为格点。因此,可以说晶体的结构是由组成晶体的基元加上空间点阵来决定的。

  晶胞(crystal cell) 晶胞是晶体的基本结构单位。反映晶体结构三维周期性的晶格将晶体划分为一个个彼此互相并置而等同的平行六面体,即为晶胞。晶胞包括两个要素:一是晶胞的大小、型式;另一是晶胞的内容,前者主要指晶胞参数的大小,即平行六面体的边长a 、b、c和夹角α、β、γ的大小, 以及与晶胞对应的空间点阵型式,即属于简单格子P还是带心格子I、F或C等;后者主要指晶胞中有哪些原子、离子以及它们在晶胞中的分布位置等。

  面心立方结构(fcc——face-centered-cubic),体心立方结构(bcc——body-centered-cubic)和密排六方结构(hcp——hexagonal close-packed)

  金属所具有的典型晶体结构为面心立方结构(fcc)(图2-27),体心立方结构(bcc)(图2-28)和密排六方结构(hcp)(图2-29),皆属于立方结构晶系。

  具有面心立方结构的常见金属有: γ-Fe 、Al、Ni、Cu、Ag、Au、Pt,等

  具有体心立方结构的常见金属有:β-Ti、V、Cr、α-Fe、β-Zr、Nb、Mo、Ta、W等

  具有密排六方结构的常见金属有:α-Ti、α-Zr、Co、Mg、Zn等

  离子键(ionic bond ) 离子键是通过异性电荷之间的吸引产生的化学结合作用,又称电价键。电离能小的金属原子(如 碱金属 )和电子亲合能大的非金属原子(如卤素)接近时,前者将失去电子形成正离子,后者将获得电子形成负离子,正负离子通过库仑作用相互吸引。当这种吸引力与离子的电子云之间的排斥力达到平衡时,形成稳定的以离子键结合的体系。离子键的特征是作用力强,而且随距离的增大减弱较慢;作用不受方向性和饱和性的限制,一个离子周围能容纳多少个异性离子及其配置方式,由各离子间的库仑作用决定。以离子键结合的体系倾向于形成晶体,以便在一个离子周围形成尽可能多的离子键,例如NaCl分子倾向于聚集为NaCl晶体,使每个钠(或氯)离子周围的离子键从1个变为6个。

  硅酸盐结构(silicate structure) 硅酸盐结构是一种共价晶体的结构,硅酸盐的基本结构单元就是 四面体(图2-33),硅原子位于氧原子四面体间隙中,每个氧原子外层只有7个电子,为-1价,还能和其他金属离子键合,其中Si的配位数是4,氧的配位数是2,Si-O-Si的结合键间键角接近145°。这种硅氧四面体可以孤立地在结构中存在,如镁橄榄石Mg2SiO4 ,锆英石ZrSiO4等;也可以通过其顶点互相连接;除可以连成骨架状外,还可以连成链状和层状(图2-34)。莫莱石就是链状硅酸盐,高岭土和滑石则是层状硅酸盐。

  离子晶体结构(ion crystal structure) 离子晶体是由正负离子通过离子键,按一定方式堆积起来而形成的,也就是说,离子晶体的基元是离子而不是原子了,这些离子化合物的晶体结构必须确保电中性,而又能使不同尺寸的离子有效地堆积在一起。多数盐类,碱类(金属氢氧化物)及金属氧化物都形成离子晶体。

  周期性(periodicity)对空间点阵,可以看成是由几何点沿空间三个不共面的方向各按一定距离无限重复地平移构成(图2-20),每个方向的一定平移距离称为该点阵在该方向的周期,故周期性也可以称之为平移对称性。理想晶体的内部结构是组成晶体的原子、分子或原子团等在三维空间中有规则地周期性重复排列,这种周期性排列是晶体最基本的特点,也是研究晶体各种物理性质的重要基础。

  对称性(symmetry)晶体的对称性是指晶体经过某种几何变换(平移、旋转等操作)仍能恢复原状的特性。

  配位数(CN——coordination number)对于简单晶格,配位数CN为晶格中任一原子周围最近邻且等距离的原子数;

  致密度(堆积因子)(Packing factor)原子体积占总体积的百分数。若以一个晶胞来计算,致密度就是晶胞中原子体积与晶胞体积之比,即k=nv/V,其中v为单个原子的体积 ,V为晶胞体积,n为一个晶胞中的原子数。

  离子半径(ionic radius)离子半径是反映 离子大小的一个物理量。离子可近似视

  为球体,离子半径的导出以正、负离子半径之和等于 离子键 键长这一原理为基础,从大量X射线晶体结构分析实测键长值中推引出离子半径。离子半径的大小主要取决于离子所带电荷和离子本身的电子分布,但还要受离子化合物结构型式(如配位数等)的影响。

  负离子配位多面体(Anion coordination polyhedron)负离子配位多面体指的是离子晶体结构中,与某一个正离子成配位关系而且相邻的各个负离子中心线所构成的多面体。

  空位(vacancy)如果晶格中某格点上的原子空缺了,则称为空位,这是晶体中最重要的点缺陷。

  间隙原子(interstice)脱位原子有可能挤入格点的间隙位置,形成间隙原子。

  色心 (color center)离子晶体的某些点缺陷是有效电荷的中心,他们可能束缚电子,这种缺陷的电子结构能吸收可见光而使该晶体着色,故称这种能吸收可见光的晶体缺陷为色心。

  刃位错、螺位错(edge dislocation、screw dislocation) 晶体中由于滑移或晶体失配,原子或离子排列的点阵结构发生畸变的线型缺陷轨道称为位错线,简称位错(dislocation)。晶体中位错的基本类型为刃型位错和螺型位错。图2-47是刃型位错模型,可以看到,与完整晶格相比,它多了一个半原子面,而且这个半原子面象个"劈"一样,楔入完整晶体,终止于晶体中,面的边缘是一条线,这条线周围若干个原子距离内的原子的规则排列遭到破坏,这就形成了刃位错。如果让晶体中的一部分在切应力作用下滑移,如图2-47所示,可以发现,发生滑移与未发生滑移的交界处也是一条直线,其附近原子的规则排列也被破坏了,如图2-48所示,这些原子呈螺旋状分布,称这种位错为螺型位错。

  晶界(grain boundary) 不同取向的晶粒之间的界面。

  孪晶界(twin boundary)孪晶间的界面叫孪晶界,其界面两侧的原子排列成镜面对称。

  相(phase) 相是指系统中的物质结构均匀的部分。气体在平衡条件下,不论有多少组分,都是均匀的,因此气相只有一种,固体内部就比较复杂了,在固体材料中,具有同样聚集状态,同样原子排列特征性质,并以界面相互隔开的均匀组成部分称之为“相”。相可以是单质,也可以是化合物。材料的性能与各组成相的性质、形态、分布和数量直接有关。

  组织(morphology)组织是相的形态、分布的图象,其中用肉眼和放大镜观察到的为宏观组织,用显微镜观察到的为显微组织,用电子显微镜观察到的为电子显微组织。

  相图 (phase diagram) 平衡状态下物系的组分、物相和外界条件间相互关系的几何描述,也称状态图或平衡图。凝聚体系的相图多数是恒压下的温度-组分关系图。

  杠杆定律(lever law) 确定某种成份的合金在二相区中各相的相对含量的法则。首先要确定各单相的成份。在一定温度下,两单相的成份是确定的,就是温度水平线与相界线的交点所对应的成份。如图2-58所示,现在我们考虑成份为 C %(wt)的A合金在t1温度下

  篇三:材料专业英语--个人整理仅供参考

  1. Translate the following into Chinese

  materials science Stone Age

  naked property Bronze age

  optical propertyintegrated circuit

  mechanical strengththermal conductivity “Materials science” involves investigating the relationships that exist between the structures and properties of materials. In contrast, “Materials engineering” is, on the basis of these structure-property correlations, designing or engineering the structure of a material to produce a predetermined set of properties. 材料科学涉及材料到研究材料的结构和性质的关系。相反,材料工程是根据材料的结构和性质的关系来设计或操纵材料的结构以求制造出一系列可预定的性质。 Virtually all important properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative. 实际上,所有固体材料的重要性质可以概括分为六类:机械、电学、热学、磁学、光学和腐蚀性。

  In addition to structure and properties, two other important components are involved in the science and engineering of materials, namely “processing” and “performance”. 除了结构和性质,材料科学和工程还有其他两个重要的组成部分,即加工和性能。

  The more familiar an engineer or scientist is with the various characteristics and structure-property relationships, as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria. 工程师与科学家越熟悉材料的各种性质、结构、功能之间的关系以及材料的加工技术,根据以上的几个原则,他或她对材料的明智选择将越来越熟练和精确。

  On only rare occasion does a material possess the maximum or ideal combination of properties. Thus, it may be necessary to trade off one characteristic for another. 只有在少数情况下材料在具有最优或理想的综合性质。因此,有必要对材料的性质进行平衡。

  2. Translate the following into English

  交叉学科介电常数

  固体材料热容

  力学性质电磁辐射

  直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。 It was not until relatively recent times that scientists came to understand the relationship between the structural element of materials and their properties.

  材料工程学主要解决材料的制造问题和材料的应用问题。

  材料的加工过程不但决定了材料的结构,同时决定了材料的特性和性能。

  材料的力学性能与其所受外力或负荷而导致的变形有关。 Mechanical properties relate deformation to an applied load or force

  Unit 2

  1. Translate the following into Chinese

  Composite materials nonlocalized electrons Advanced materialsstiffnesses

  Semiconductorsbiomaterials

  Smart materials nanoengineered materials

  Metals are extremely good conductors of electricity and heat , and are not transparent to visible light; a polished metal surface has a lustrous appearance. 金属是十分好的电和热的导体,它们对可见光不透明;一个抛光的金属表面有光辉的外表。

  Ceramics are typically insulative to the passage of heat and electricity, and more resistant to high temperatures and harsh environments than metals and polymers. 陶瓷材料是典型的电和热的绝缘体,并且它们比金属和聚合物更加耐高温和耐苛刻的环境。

  Materials that are utilized in high-technology (or high-tech) applications are sometimes termed advanced materials. 用在高科技中的材料有时被称作先进材料。

  Piezoelectric ceramics expand and contract in response to an applied electeic field (or voltage); conversely, they also generate an electric field

  when their dimensions are altered. 压电陶瓷在电场(或电压)的作用下作出舒张和收缩反应;相反,他们也产生电场当它们的尺寸会改变

  With the advent of scanning probe microscopes, which permit observation of individual atoms and molecules, it has become possible to manipulate and move atoms and molecules to form new structures and, thus, design new materials that are built from simple atomiclevel constituents (i.e., “ materials by design”). 随着允许观察单个的原子和分子的扫描探针显微镜的出现,使得操纵和移动原子和分子去组成的新结构和设计由简单的原子能级成分的新的材料 (也就是,“材料的设计”)成为可能,

  2. Translate the following into English

  先进材料 陶瓷材料

  高性能材料黏土材料

  合金 移植

  玻璃纤维 碳纳米管

  金属元素有许多游离电子,金属材料的许多性质可直接归功于这些电子。Metallic materials have large numbers of nonlocalized electrons,and many properties of metals are directly attributable to these electrons.

  许多聚合物材料是有机化合物,并具有大的分子结构。Many polymers are organic compounds and they have very large molecular structures,

  半导体材料的电性特征介于导电材料(如金属、金属合金)与绝缘体(陶瓷材料和聚合体材料)之间。Semiconductors have electrical properties that are intermediate between the electrical conductors (viz.

  metals and metal alloys) and insulators (viz. ceramics and polymers). 生物材料不能产生毒性,并且必须与人体组织互相兼容。

  Biomaterials must not produce toxic substances and must be compatible with body tissues

  Unit 4

  2. Translate the following into Chinese

  phase transformation temperatures

  specific gravity

  thermal conductivity

  the melting point

  the acceleration of gravity

  magnetic permeability

  (1)An object will float in water if its density is less than the density of water and sink if its density is greater that that of water. Similarly, an object with specific gravity less than one will float and those with a specific gravity greater than one will sink. 一个对象将浮在水上,如果它的密度小于水的密度和水槽如果其密度大,是水的。同样,一个对象,比重不到一浮与比重大于一沉。

  (2)Materials that cause the lines of flux to move farther apart, resulting in a decrease in magnetic flux density compared with a vacuum, are called diamagnetic. Materials that concentrate magnetic flux by a factor of more than one but less than or equal to ten are called

【材料学专业英语词汇精选】相关文章:

材料专业英语词汇03-27

材料英语词汇03-03

英语词汇学03-06

动物学英语词汇04-01

诊断学英语词汇大全05-09

广告专业的英语词汇03-06

造纸专业英语词汇03-06

电泵专业英语词汇03-06

电子专业英语词汇03-22