- 相关推荐
大学数学排列组合的7大方法
导语:数学必背各类公式,尤其是一些常考常用的重点公式,一定要背下来,且能灵活的运用。下面就由小编为大家带来大学数学排列组合的7大方法,大家一起去看看怎么做吧!

大学数学排列组合的7大方法
1.元素分析法
【例】求7人站一队,甲必须站在当中的不同站法。
【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。
2.位置分析法
【例】求7人站一队,甲、乙都不能站在两端的不同站法。
【解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。
3.间接法
【例】求7人站一队,甲、乙不都站两端的不同站法。
【解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。
4.捆绑法
【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。
【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。
5.插空法
【例】求7人站一队,甲、乙两人不相邻的不同站法。
【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。
6.留出空位法
【例】求7人站一队,甲在乙前,乙在丙前的不同站法。
【解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。
7.单排法
【例】求9个人站三队,每排3人的不同站法。
【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。
数学排列组合的知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)
2. 排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!
Cnm = n!/(n-m)!m!
Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素。 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置。
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答。
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想。
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1
③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
【大学数学排列组合的7大方法】相关文章:
数学方法论心得08-17
学习统计方法大班数学教案11-05
有关方法的作文09-19
环保的方法作文12-20
读书方法作文10-31
读书的方法的作文06-21
小议读书与方法作文11-21
读书的方法的作文[优秀]06-22
关于读书方法的作文02-26
诗歌鉴赏方法与技巧05-10